首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new site-specific endonuclease, BbeI, has been partially purified from the anaerobic bacterium, Bifidobac-terium breve. BbeI recognizes the hexanucleotide sequence
and cleaves it at the sites indicated by the arrows, producing 3′-cohesive termini four bases long.  相似文献   

2.
Summary The Spec1 and Spec2 mRNAs (Strongylocentrotus purpuratus ectoderm mRNAs) represent a small gene family that encodes 10–12 members of the troponin C superfamily of calcium-binding proteins. These mRNAs and proteins accumulate in the aboral (dorsal) ectoderm of sea urchin embryos and larvae. Using genomic and cDNA clones, we have compared the sequences of four Spec mRNAs: Spec1, Spec2a, Spec2c, and Spec2d. The mRNAs all have at least 120 bases of 5 untranslated leader, approximately 450 bases of open reading frame, and 900 bases (Spec1) or 1250 bases (Spec2a, 2c, 2d) of 3 untranslated trailer. Unexpectedly, when long stretches of 5 untranslated regions or 3 untranslated regions are compared to one another, they are found to be less divergent than the protein-coding regions. Comparing Spec2d, the most divergent member of the family, with the other Spec mRNAs shows that while the protein-coding regions are 60–62% matched, the untranslated regions are greater than 80% matched. Comparisons among Spec1, Spec2a, and Spec2c demonstrate similar but less dramatic conservation of untranslated regions. Our data imply that the Spec gene family has evolved differently from most gene families, with mutations accumulating most rapidly in intron regions, less rapidly in protein-conding regions, and least rapidly in 5 and 3 untranslated regions.  相似文献   

3.
4.
Two natural isolates from fallow-deer rumen identified as Selenomonas ruminantium were found to produce a restriction endonuclease which we called Sru4DI. This enzyme was isolated from cell extracts by phosphocellulose chromatography. Analysis of the Sru4DI recognition site showed that Sru4DI recognizes the hexanucleotide sequence 5-AT/TAAT-3 generating 5 dinucleotide protruding ends upon cleavage and thus is a true isoschizomer of VspI, a restriction enzyme isolated from Vibrio sp.  相似文献   

5.
Molecular Biology Reports -  相似文献   

6.
《Gene》1997,186(2):181-188
The rat carbonic anhydrase II gene was characterized and found to be approximately 15.5 kb in length and to contain 7 exons and 6 introns. All intron/exon junction and branch point sequences conform to consensus sequences, and the overall rat CA II genomic structure appears to be conserved upon comparison with mouse, human, and chicken CA II genes. The putative cis-acting elements within the analyzed 1014 bp 5′ flanking region include: TATA box, 4 Sp1 binding sites, 2 AP2 sites and putative tissue-specific β-globin-like repeat elements. A CpG island of approximately 800 bp was identified that begins about 600 bp upstream of exon 1 and extends about 200 bp into intron 1. In the 3′ UTR, two polyadenylation signals (AATAAA) are present, the second of which is believed to be utilized. Northern blot analysis reveals that the 1.7 kb rat CA II mRNA is abundantly expressed in adult male brain and kidney, while negligible amounts are detected in heart and liver.  相似文献   

7.
Evidence is presented that multiple forms of cyclic nucleotide phophodiesterase (PDE) activity chromatographically separated from the soluble fraction of bovine hypothalamus are co-eluted with multiple forms of 5-nucleotidase (5N) activity. The enzymes could not be resolved from each other by anion-exchange chromatography on DEAE-TSK; by affinity chromatography on phenyl-, blue-, concanavalin A-, 5 AMP-sepharose, cAMP-silica gel; or by gel filtration on sephacryl S-200. The catalytic activities were found to be associated with the tetrameric, dimeric, and monomeric forms of the enzymes. The molecular weights determined by gel filtration or by SDS-gel electrophoresis were 220, 114, and 57 kDa, respectively. Kinetic analysis revealed that the first-order rate constant for 5 AMP hydrolysis measured in the reactions: cAMP5AMPadenosine was 100 times higher than that in the reaction: 5AMPadenosine. Thus, functional interrelation between PDE and 5N was expressed in drastic acceleration of the consecutive reactions: cAMP 5AMPadenosine. The results confirm the conclusion about the existence of a multienzyme system involving PDE and 5N or of a single bifunctional enzyme in brain tissue.This revised version was published online in June 2005 with corrections to the author name Gurvits.  相似文献   

8.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

9.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3′,5′-monophosphate (cyclic AMP) to adenosine 5′-phosphate at an optimum pH of approx. 4.3, close to that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP.On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. Sulphatase A also hydrolyses guanosine 3′,5′-monophosphate, but not uridine 3′,5′-monophosphate nor adenosine 2′,3′-monophosphate.  相似文献   

10.
Summary Soluble cyclic nucleotide 3:5 monophosphate phosphodiesterase (PDE) (EC 3.1.4.17) obtained from beef adrenal cortex as the 100,000 g/1.5 h supernatant is usually regarded as a very hydrophilic protein. However, when subjected to hydrophobic chromatography on Octyl-Sepharose CL 413 it reveals strong hydrophobic interaction with the column matrix. The chromatographic procedure leads to multiple but distinct forms of PDE which degrade cAMP beyond 5AMP to inosine, via adenosine. The same metabolic pathway was previously observed with a membrane bound multienzyme sequence. Even the soluble PDE forms separated by gel chromatography (Sephadex G 200, Sepharose S 200 and Sepharose 6B) and soluble PDE of other tissue (heart) displayed the same metabolic pattern. These findings indicate a linkage between PDE, nucleotidase and deaminase activities. The intimate association of the enzyme is additionally supported by the phenomenon of kinetic advantage clearly observed with the most hydrophobic PDE form. Its end product, inosine, is formed more rapidly from CAMP than from the intermediate 5AMP. This paradoxical phenomenon is explained by close physical proximity between the enzymes involved in the metabolic pathway. Furthermore, when the most hydrophobic PDE form was immobilized on Octyl-Sepharose, rather than loss of catalytic activity even higher enzyme activities were measured. It is suggested that the so-called multiple forms of soluble PDE-at least in part-represent more or less preserved forms of a native, membrane bound, multienzyme sequence which degrades cyclic nucleotides.  相似文献   

11.
12.
13.
《Cellular signalling》2014,26(2):383-397
3′,5′-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague–Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.  相似文献   

14.
Summary 2-Amino-2-deoxyuridine reacts efficiently with nucleoside 5-phosphorimidazolides in aqueous solution. The dinucleoside monophosphate analogues were obtained in yields exceeding 80% under conditions in which little reaction occurs with the natural nucleosides.In a similar way, the 5-phosphorimidazolide of 2-amino-2-deoxyuridine undergoes self-condensation in aqueous solution to give a complex mixture of oligomers.The phosphoramidate bond in the dinucleoside monophosphate analogues is stable for several days at room temperature and pH 7. The mechanisms of their hydrolysis under acidic and alkaline conditions are described.Abbreviations A adenosine - C cytidine - G guanosine - U uridine - T thymidine - UN 3 2-azido-2-deoxyuridine - UNH 2 2-amino-2-deoxyuridine - ImpA adenosine 5-phosphorimidazolide - ImpU uridine 5-phosphorimidazolide - ImpUN 3 2-azido-2-deoxyuridine 5-phosphorimidazolide - ImpUNH 2 2-amino-2-deoxyuridine 5-phosphorimidazolide - pA adenosine 5-phosphate - pU uridine 5-phosphate - pUN 3 2-azido-2-deoxyuridine 5-phosphate - pUNH 2 2-amino-2-deoxyuridine 5-phosphate - UpA uridylyl-[35]-adenosine - UpU uridylyl-[35]-uridine - UNpA adenylyl-[52]-2-amino-2-deoxy-uridine - UNpU uridylyl-[52]-2-amino-2-deoxyuridine (pUN)n n=2,3,4 [25]-linked oligomers of pUNH 2 poly(A) polyadenylic acid - Im imidazole - MeIm l-methylimidazole  相似文献   

15.
16.
The two genes for -mannanase and cellulase of Bacillus sp. 5H have been cloned in Escherichia coli JM 109 by a shotgun method, though the cellulase gene was not expressed in Bacillus sp. 5H. The nucleotide sequences of the -mannanase gene and the cellulase gene revealed open reading frames of 1,086 and 1,503 base pairs, respectively, coding for a proteins of Mr 40,803 Da (-mannanase) and 55,420 Da (cellulase). The deduced primary structure of -mannanase comprised 362 amino acids which had a mature protein of 336 amino acids and a signal peptide of 26 amino acids and that of cellulase comprised 501 amino acid residues.  相似文献   

17.
Male New Zealand White rabbits were divided into three groups: (I) control, (II) high-fat-diet (HFD) fed, and (III) HFD fed+selenium supplemented. After 3 mo of treatment, there was a significant increase in serum cholesterol and triglycerides in the HFD-fed group as compared to the control. However in the selenium (Se)-supplemented group, the levels of serum cholesterol and triglycerides were significantly less as compared to group II. HFD feeding resulted in decreased serum Se levels, but supplementation of dietary Se along with HFD, as in group III, showed an apparent increase in its levels. The Se-dependent glutathione peroxidase (GSH-Px) activity in the liver and the aorta increased significantly in HFD-fed animals and also showed an additional significant increase on Se supplementation. Both serum T3 and T4 levels showed a significant decrease on HFD feeding. However, supplementation of Se led to a significant increase in the levels of these parameters viz-à-viz HFD-fed animals. HFD feeding significantly decreased the activity of type I iodothyronine 5′-deiodinase (5′-DI) in the liver from group II rats. On supplementation of Se along with HFD, the activity increased in the liver. However, there was no significant change in its activity in the aorta. The 5′-DI activity in the thyroid showed an opposite trend in comparison with peripheral tissues (i.e., liver). The important finding of this study is that in the hyperlipidemic state, deiodinase in the thyroid behaves in a different manner as compared to its activity in extrathyroidal tissues.  相似文献   

18.
Human DNA apurinic/apyrimidinic (AP-) endonuclease 1 (APE1) is involved in the base excision repair (BER) pathway. The enzyme hydrolyzes DNA from the 5 side of the AP site. In addition to endonuclease activity, APE1 also possesses other slight activities including 3 -5 exonuclease activity. The latter is preferentially exhibited towards mispaired (non-canonical) nucleotides, this being the reason why APE1 is considered as a proofreading enzyme correcting the misincorporations introduced by DNA polymerase beta. We have studied 3 -5 exonuclease activity of APE1 towards dCMP and dTMP residues and modified dCMP analogs with photoreactive groups at the 3 end of the nicked DNA. Photoreactive dNMP residues were incorporated at the 3 end of the lesion using DNA polymerase beta and photoreactive dNTPs. The dependence of exonuclease activity on the "canonicity" of the base pair formed by dNMP flanking the nick at the 3 end, on the nature of the group flanking the nick at the 5 end, and on the reaction conditions has been determined. Optimal reaction conditions for the 3 -5 exonuclease hydrolysis reaction catalyzed by APE1 in vitro have been established, and conditions when photoreactive residues are not removed by APE1 have been chosen. These reaction conditions are suitable for using photoreactive nicked DNAs bearing 3 -photoreactive dNMP residues for photoaffinity labeling of proteins in cellular/nuclear extracts and model APE1-containing systems. We recommend using FAPdCTP for photoaffinity modification in APE1-containing systems because the FAPdCMP residue is less prone to exonuclease degradation, in contrast to FABOdCTP, which is not recommended.  相似文献   

19.
Abstract

The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2′endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and ribo- guanosine residues in nucleosides and nucleotides prefer the syn-C2′endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5′- H and the N3 of the base and, a few syn-C3′endo conformations are also observed. Evidence is presented for the occurrence of the C3′endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4′-C5′ and P-O5′ bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3′endo conformation and the distorted backbone sugar-phosphate bonds (C4′-C5′ and P- O5′) as in the earlier right-handed case.  相似文献   

20.
RNase J1, a ribonuclease with 5′ exonuclease and endonuclease activities, is an important factor in Bacillus subtilis mRNA decay. A model for RNase J1 endonuclease activity in mRNA turnover has RNase J1 binding to the 5′ end and tracking to a target site downstream, where it makes a decay-initiating cleavage. The upstream fragment from this cleavage is degraded by 3′ exonucleases; the downstream fragment is degraded by RNase J1 5′ exonuclease activity. Previously, ΔermC mRNA was used to show 5′-end dependence of mRNA turnover. Here we used ΔermC mRNA to probe RNase J1-dependent degradation, and the results were consistent with aspects of the model. ΔermC mRNA showed increased stability in a mutant strain that contained a reduced level of RNase J1. In agreement with the tracking concept, insertion of a strong stem–loop structure at +65 resulted in increased stability. Weakening this stem–loop structure resulted in reversion to wild-type stability. RNA fragments containing the 3′ end were detected in a strain with reduced RNase J1 expression, but were undetectable in the wild type. The 5′ ends of these fragments mapped to the upstream side of predicted stem–loop structures, consistent with an impediment to RNase J1 5′ exonuclease processivity. A ΔermC mRNA deletion analysis suggested that decay-initiating endonuclease cleavage could occur at several sites near the 3′ end. However, even in the absence of these sites, stability was further increased in a strain with reduced RNase J1, suggesting alternate pathways for decay that could include exonucleolytic decay from the 5′ end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号