首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

2.
The aim of the present investigation was to study and compare the in vitro binding properties of the two radioligands N-[3H]methylspiperone ([3H]NMSP) and [3H]raclopride. These compounds, labeled with 11C, have been extensively used in positron emission tomography studies on central dopamine D2 receptors in schizophrenic patients, although with diverging results. One study (using [11C]NMSP) showed an increased dopamine receptor density in drug-naive schizophrenic patients, whereas in another study (using [11C]raclopride) the density in schizophrenic patients was no different from that in healthy controls. In the present study, using in vitro binding techniques, the density of the binding sites was found to be similar irrespective of which of the two radioligands was used (20 fmol/mg wet weight in rat striatum and 10 fmol/mg in human putamen; the 5-hydroxytryptamine 2 receptors were blocked with 40 nM ketanserin). [3H]NMSP had a 10-fold higher affinity (KD, 0.3 nM in rat striatum and 0.2 nM in human putamen) than [3H]raclopride (KD, 2.1 nM in rat striatum and 3.9 nM in human putamen), which was consistent with the longer dissociation half-life of [3H]NMSP compared with [3H]raclopride (14.8 and 1.19 min, respectively). There was an approximate overall similarity between the inhibition constants for five dopamine antagonists, chlorpromazine, haloperidol, raclopride, remoxipride, and NMSP, when using either radioligand. The Ki values were, however, two- to four-fold higher when using [3H]NMSP as the radioligand, irrespective of inhibiting compound, except for chlorpromazine (and haloperidol in human putamen). NMSP was found to inhibit the binding of [3H]raclopride competitively, whereas raclopride inhibited the binding of [3H]NMSP both competitively and noncompetitively. This difference suggests that part of the binding site is exclusively used by NMSP and can only be allosterically interfered with by raclopride. It is proposed that [3H]NMSP binds to an additional set of accessory binding sites, presumably located more distantly from the agonist binding active site than the sites to which [3H]raclopride binds.  相似文献   

3.
(+)-2-[123I] A-69024, [(+)-1-(2-[123I] iodo-4,5-dimethoxy-benzyl)-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline], is a specific and enantioselective dopamine D1 receptor radioligand. The in vivo biodistribution of this radioligand in rats showed high brain uptake and a distribution consistent with the density of dopamine D1 receptors. Highest uptake was observed in the striatum (0.65 %ID/g) at 5 min followed by clearance. As a measure of specificity the striatum/cerebellar ratio reached a maximum of 3.9 at 30 min post-injection. Radioactivity in the striatum was reduced by 68% by pre-administration of the D1 antagonist SCH 23390. Pre-administration of other dopamine binding drugs, spiperone (D2), 7-OH-DPAT (D3), and clozapine (D4) displayed no inhibitory effect on (+)-2-[123I]A-69024 accumulation in any brain region. Ketanserin (5-HT2/5-HT2C) and haloperidol (D2 receptor antagonist/sigma receptor ligand) also displayed no inhibitory effect in any brain region studied. With the pharmacologically inactive enantiomer, (-)-2-[123I]A-69024, the brain uptake was determined to be non-specific since a striatum/cerebellar ratio of near 1 was observed throughout the time course of the experiment. (+)-2-[123I]A-69024 displays enantioselectivity for dopamine D1 receptors and may deserve further investigation as a possible SPECT radioligand.  相似文献   

4.
The regional mouse brain distribution of a new carbon-11 labeled derivative of vesamicol, [11C]-5-(N-methylamino)benzovesamicol [( 11C]MABV) is reported. Radiotracer concentrations in vivo are in the rank order of striatum greater than cortex greater than hippocampus greater than hypothalamus greater than cerebellum, consistent with reported distributions of other presynaptic cholinergic neuronal markers. In time course studies, striatum/cerebellum and cortex/cerebellum ratios for (-)-[11C]MABV continue to increase to values of 13 and 5, respectively, 75 min after i.v. injection of [11C]MABV. The specific binding in striatum and cortex is lowered by pretreatment with (+/-)-vesamicol, and shows stereoselectivity with lower uptake and lower ratios for the (+)-enantiomer. (-)-enantiomer. (-)-[11C]MABV is proposed as a positron-emitting radioligand for the in vivo study of presynaptic cholinergic neurons.  相似文献   

5.
Large numbers of in vitro studies and microdialysis studies suggest that dopaminergic regulation of striatal acetylcholine (ACh) output is via inhibitory dopamine D2 receptors and stimulatory dopamine D1 receptors. Questions remain as to the relative predominance of dopamine D2 versus D1 receptor modulation of striatal ACh output under physiological conditions. Using positron emission tomography, we first demonstrate that norchloro[18F]fluoroepibatidine ([18F]NFEP), a selective nicotinic ACh receptor (nAChR) ligand, was sensitive to changes of striatal ACh concentration. We then examined the effect of quinpirole (D2 agonist), raclopride (D2 antagonist), SKF38393 (D1 agonist), and SCH23390 (D1 antagonist) on striatal binding of [18F]NFEP in the baboon. Pretreatment with quinpirole increased the striatum (ST) to cerebellum (CB) ratio by 26+/-6%, whereas pretreatment with raclopride decreased the ST/CB ratio by 22+/-2%. The ratio of the distribution volume of [18F]NFEP in striatum to that in cerebellum, which corresponds to (Bmax/K(D)) + 1 (index for nAChR availability), also showed a significant increase (29 and 20%; n = 2) and decrease (20+/-3%; n = 3) after pretreatment with quinpirole and raclopride, respectively. However, both the D1 agonist and antagonist had no significant effect. This suggests that under physiological conditions the predominant influence of endogenous dopamine on striatal ACh output is dopamine D2, not D1, receptor-mediated.  相似文献   

6.
The time course of regional mouse brain distribution of radioactivity after i.v. injection of a tracer dose of [11C]tetrabenazine ([11C]TBZ) has been determined. Radiotracer uptake into brain is rapid, with 3.2% injected dose in the brain at 2 min. Egress from the brain is also very rapid, with only 0.21% of the injected dose still present in brain at 60 min. Radiotracer washout is slowest from the striatum and hypothalamus, consistent with binding to the higher numbers of vesicular monamine transporters in those brain regions. The rank order of radioligand binding at 10 min after injection is striatum greater than hypothalamus greater than hippocampus greater than cortex = cerebellum, similar to that found using in vitro assays of the vesicular monoamine transporters. Maximum ratios of striatum/cerebellum and hypothalamus/cerebellum were 2.85 +/- 0.52 and 1.69 +/- 0.25, respectively, at 10 min after injection. Co-injection of unlabeled tetrabenazine (10 mg/kg) or pretreatment with reserpine (1 mg/kg i.p., 24 h prior) was used to demonstrate specific binding of radioligand in striatum, hypothalamus, cortex, hippocampus and cerebellum. Distribution of [11C]TBZ was unaffected by pretreatment with the neuronal dopamine uptake inhibitor GBR 12935 (20 mg/kg i.p., 30 min prior). [11C]Tetrabenazine is thus a promising new radioligand for the in vivo study of monoaminergic neurons using Positron Emission Tomography.  相似文献   

7.
It is well documented that guanidine nucleotide-coupled dopamine subtype 2 receptors (D2) are configured in high and low affinity states for the dopamine agonist in vitro. However, it is still unclear whether these functional states exist in vivo. We hypothesized that positron-labeled D2 agonist and Positron Emission Tomography can be used to probe these functional states noninvasively. Recently, we demonstrated in nonhuman primates that N-[11C]propyl-norapomorphine (NPA), a full D2 agonist, is a suitable tracer for imaging the high affinity states of D2 receptors in vivo. We also developed kinetic modeling method to derive receptor parameters, such as binding potential (BP) and specific uptake ratios (V3'). When coupled with a dopamine releasing drug, amphetamine, NPA was found to be more sensitive than antagonist tracers, such as [11C]raclopride (RAC), to endogenous dopamine concentration changes (by about 42%). This finding suggests that NPA is a superior tracer for reporting endogenous DA concentration. In addition, the difference of the BP or V3' of NPA and RAC under control and amphetamine challenge conditions could be used to estimate the functional states of D2 receptors in vivo. On the basis of our findings and the assumptions that NPA binds only to the high affinity states and RAC binds equally to both affinity states, we proposed that about 70% of the D2 receptors are configured in the high affinity states in vivo.  相似文献   

8.
Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C]raclopride at baseline and after two pharmacological challenges with L-DOPA?+?benserazide with or without 8-OHDPAT co-treatment. Identical challenge regimens were used with the subsequent microdialysis concomitant with ratings of LID severity. The baseline increase of [(11) C]raclopride-binding potential (BP(ND) ) in lesioned striatum was eliminated by the L-DOPA challenge, while the concurrent administration of 8-OHDPAT prevented this L-DOPA-induced displacement of [(11) C]raclopride significantly in lesioned ventral striatum and near significantly in the dorsal striatum. With microdialysis, the L-DOPA challenge raised the extracellular DA in parallel with the emergence of strong LID. Co-treatment with 8-OHDPAT significantly attenuated the release of extracellular DA and LID. The 8-OHDPAT co-treatment reversed the L-DOPA-induced decrease of [(11) C]raclopride binding and increase of extracellular DA and reduced the severity of LID. The reversal of the effect of L-DOPA on [(11) C]raclopride binding, extracellular DA and LID by 5-HT agonist administration is consistent with the notion that part of the DA increase associated with LID originates in serotonergic neurons.  相似文献   

9.
The dopamine-D3 receptor is of special interest due to its postulated role in the pathophysiology and treatment of schizophrenia and Parkinson's Disease. Increasing evidences support the assumption that the D3 receptors are occupied to a high degree by dopamine at physiological conditions. Research on the functional role of the D3 receptors in brain has however been hampered by the lack of D3 selective ligands. In the present Positron Emission Tomography (PET) study the binding of the novel, putative dopamine-D3 receptor ligand, [11C]RGH-1756 was characterized in the cynomolgus monkey brain. [11C]RGH-1756 was rather homogenously distributed in brain and the regional binding potential (BP) values ranged between 0.17 and 0.48. Pretreatment with unlabelled RGH-1756 decreased radioligand binding to the level of the cerebellum in most brain areas. The regional BP values were lower after intravenous injection of a higher mass of RGH-1756, indicating saturable binding of [11C]RGH-1756. The D2/D3 antagonist raclopride partly inhibited the binding of [11C]RGH-1756 in several brain areas, including the striatum, mesencephalon and neocortex, whereas the 5HT(1A) antagonist WAY-100635 had no evident effect on [11C]RGH-1756 binding. Despite the promising binding characteristics of RGH-1756 in vitro the present PET-study indicates that [11C]RGH-1756 provides a low signal for specific binding to the D3 receptor in vivo. One explanation is that the favorable binding characteristics of RGH-1756 in vitro are not manifested in vivo. Alternatively, the results may support the hypothesis that the dopamine-D3 receptors are indeed occupied to a high extent by dopamine in vivo and thus not available for radioligand binding.  相似文献   

10.
It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved to be more vulnerable to competition from endogenous dopamine than was the antagonist ligand [(11)C]raclopride, measured ex vivo in mouse striatum, and subsequently in multi-tracer PET studies of analogous design. Based on these results, we predicted that prolonged dopamine depletion would result in a preferential increase in agonist binding, and a lesser competition from residual dopamine to the agonist binding. To test this hypothesis we used autoradiography to measure [(3)H]NPA and [(3)H]raclopride binding sites in hemi-parkinsonian rats with unilateral 6-OHDA lesions, with and without amphetamine challenge. Unilateral lesions were associated with a more distinct increase in [(3)H]NPA binding ex vivo than was seen for [(3)H]raclopride binding in vitro. Furthermore, this preferential asymmetry in [(3)H]NPA binding was more pronounced in amphetamine treated rats. We consequently predict that agonist ligands should likewise be fitter than antagonists for detecting responses to denervation in positron emission tomography studies of idiopathic Parkinson's disease. Agonist binding increases in vivo are likely to reflect the composite of a sensitization-like phenomenon, and relatively less competition from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism.  相似文献   

11.
(+/-)-1-[4-(2-Isopropoxyethoxymethyl)-phenoxy]-3-isopropylamino-2-propanol (bisoprolol) is a potent, clinically used beta(1)-adrenergic agent. (R)-(+) and (S)-(-) enantiomers of bisoprolol were labelled with carbon-11 (t(1/2)=20.4 min) as putative tracers for the non-invasive assessment of the beta(1)-adrenoceptor subtype in the human heart and brain with positron emission tomography (PET). The radiosynthesis consisted of reductive alkylation of des-iso-propyl precursor with [2-11C]acetone in the presence of sodium cyanoborohydride and acetic acid. The stereo-conservative synthesis of (R)-(+) and (S)-(-)-1-[4-(2-isopropoxyethoxymethyl)-phenoxy]-3-amino-2-propanol to be used as the precursors for the radiosynthesis of [11C]bisoprolol enantiomers was readily accomplished by the use of the corresponding chiral epoxide in three steps starting from the commercially available hydroxybenzyl alcohol. The final labelled product (either (+) or (-)-1-[4-(-isopropoxyethoxymethyl)-phenoxy]-3- [11C]isopropylamino-2-propanol) was obtained in 99% radiochemical purity in 30 min with 15+/-5% (EOS, non-decay corrected) radiochemical yield and 3.5+/-1 Ci/micromol specific radioactivity. Preliminary biological evaluation of the tracer in rats showed that about 30% of heart uptake of [11C](S)-bisoprolol is due to specific binding. The high non-specific uptake in lung might mask the heart uptake, thus precluding the use of [11C](S)-bisoprolol for heart and lung studies by PET. The remarkably high uptake of the tracer in rat brain areas rich of beta-adrenergic receptors such as pituitary (1.8+/-0.3% I.D. at 30 min) was blocked by pre-treatment with the beta-adrenergic antagonists propranolol (45%) and bisoprolol (51%, p<0.05). [11C](S)-bisoprolol deserves further evaluation in other animal models as a putative beta(1) selective radioligand for in vivo investigation of central adrenoceptors.  相似文献   

12.
Positron emission tomography (PET) is an imaging technique that provides direct measurements of receptor binding in neurons. The present study was performed to find reasons for the common observation of rapid metabolism of receptor radioligands during time of a brain PET scan. To this aim, the 1-h phase during which imaging-data are acquired was evaluated by using a pharmacokinetic approach. The values of half-lives, volumes of distribution, and dilution calculated for a set of metabolite corrected plasma curves of D2-receptor radioligand [(11)C]raclopride (PETc) during 50 min after radioligand injection in tracer dose were compared with the reference values obtained from a set of plasma curves (REFc) during 30 h after i.v. infusion of unlabelled raclopride in pharmacological doses. We found that the half-life of PETc correspond to the distribution half-life of REFc. Accordingly, the distribution volume during the terminal phase of PETc (13.6 ± 10.8 L) was significantly lower than that during the terminal phase (82.2 ± 30.5 L) and at steady state (59.4 ± 20 L) for REFc, and the dilution of raclopride in body for PETc at 50 min was 38 L, whereas it was 1015 L for REFc at 30 h. The [(11)C]raclopride in plasma at 50 min was higher (10% of dose) than the value for unlabelled raclopride at 30 h (4%). We concluded that the kinetic behavior of the radiolabelled drug [(11)C]raclopride during the 1 h time of a PET corresponds to the distribution phase. The high percentage of [(11)C]raclopride in plasma during this phase is a likely reason for the observed rapid radioligand metabolism.  相似文献   

13.
(S)-5-bromo-N-[(1-cyclopropylmethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxybenzamide (4) has pico-molar in vitro binding affinity to D(2) receptor (K(i) (D(2))=0.003 nM) with lower affinity to D(3) receptor (K(i) (D(3))=0.22 nM). In this study, we describe radiosynthesis of [(11)C]4 and evaluation of its binding characteristics in post-mortem human brain autoradiography and with PET in cynomolgus monkeys. The (11)C labelled 4 was synthesized by using [(11)C]methyltriflate in a methylation reaction with its phenolic precursor with good incorporation yield (64+/-11%, DCY) and high specific radioactivity >370 GBq/micromol (>10,000 Ci/mmol). In post-mortem human brain autoradiography [(11)C]4 exhibited high specific binding in brain regions enriched with dopamine D(2)/D(3) receptors and low level of non-specific binding. In cynomolgus monkeys [(11)C]4 exhibited high brain uptake reaching 4.4% ID at 7.5 min. The binding in the extrastriatal low density D(2)-receptor regions; thalamus and frontal, parietal, temporal, and occipital cortex, was clearly visible. Pre-treatment with raclopride (1 mg/kg as tartrate) caused high reduction of binding in extrastriatal regions, including cerebellum. [(11)C]4 is a promising radioligand for imaging D(2) receptors in low density regions in brain.  相似文献   

14.
(-)-[3H]Desmethoxyverapamil (2,7-dimethyl-3-(3,4-dimethoxyphenyl)-3-cyan- 7-aza-9-(3-methoxyphenyl)-nonanhydrochloride) was used to label putative Ca2+ channels in guinea pig skeletal muscle. The binding sites for (-)-[3H]desmethoxyverapamil co-purified with t-tubule membrane markers in an established subcellular fractionation procedure. (-)-[3H]Desmethoxyverapamil bound to partially purified t-tubule membranes with a KD of 2.2 +/- 0.1 nM and a Bmax of 18 +/- 4 pmol/mg membrane protein at 25 degrees C. Binding was stereoselectively inhibited by phenylalkylamine Ca2+ antagonists and in a mixed, non-competitive fashion by the benzothiazepine Ca2+ antagonist d-cis-diltiazem and the 1,4-dihydropyridine Ca2+ antagonist (+)-PN 200-110. Target size analysis of the (-)-[3H]desmethoxyverapamil drug receptor site revealed a molecular mass of 107 +/- 2 kDa. In contrast, the target size of the allosterically coupled benzothiazepine drug receptor site, labelled by d-cis-[3H]diltiazem, was 130.5 +/- 4 kDa (p less than 0.01) and of the 1,4-dihydropyridine binding site 179 kDa, when labelled with [3H]nimodipine. It is concluded that (-)-[3H]desmethoxyverapamil is an extremely useful radioligand for the phenylalkylamine-selective receptor site of the t-tubule localized Ca2+ channel which is allosterically linked to two other distinct drug receptor sites.  相似文献   

15.
N1-(2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(11)C]R116301) was prepared and evaluated as a potential positron emission tomography (PET) ligand for investigation of central neurokinin(1) (NK(1)) receptors. 1-Bromo-3,5-di(trifluoromethyl)benzene was converted in three steps into 3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl chloride, which was reacted with N1-(2,6-dimethylphenyl)-2-{4-[(2R,4S)-2-benzylhexahydro-4-pyridinyl]piperazino}acetamide providing [(11)C]R116301 in 45-57% decay-corrected radiochemical yield. The total synthesis time, from end of bombardment (EOB) to the formulated product, was 35 min. Specific activity (SA) was 82-172 GBq/micromol (n=10) at the end of synthesis. N1-([4-(3)H]-2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(3)H]R116301) was also synthesized (SA: 467 GBq/mmol). The B(max) for [(3)H]R116301 measured in vitro on Chinese hamster ovary cell membranes stably transfected with the human NK(1) receptor was 19.10+/-1.02 pmol/mg protein with an apparent dissociation constant of 0.08+/-0.01 nM. Ex vivo, in vivo and in vitro autoradiography studies with [(3)H]R116301 in gerbils demonstrated a preferential accumulation of the radioactivity in the striatum, olfactory tubercule, olfactory bulb and locus coeruleus. In vivo, the biodistribution of [(11)C]R116301 in gerbils revealed that the highest initial uptake is in the lung, followed by the liver and kidney. In the brain, maximum accumulation was found in the olfactory tubercules (1.10+/-0.08 injected dose (ID)/g 20 min post injection (p.i.)) and the nucleus accumbens (1.00+/-0.12ID/g 10 min p.i.). Tissue/cerebellum concentration ratios for striatum and nucleus accumbens increased with time due to rapid uptake followed by a slow wash out (1.29 and 1.64, respectively, 30 min p.i.). A tissue to cerebellum ratio of 1.33 and 1.62 was also observed for olfactory bulb and olfactory tubercules, respectively (20 min p.i.). In summary, [(11)C]R116301 appears to be a promising radioligand suitable for the visualization of NK(1) receptors in vivo using PET.  相似文献   

16.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

17.
(R)-1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-propan-2-ol ((R)-OHDMI) and (S,S)-1-cyclopentyl-2-(5-fluoro-2-methoxy-phenyl)-1-morpholin-2-yl-ethanol (CFMME) were synthesized and found to be potent inhibitors of norepinephrine reuptake. Each was labelled efficiently in its methyl group with carbon-11 (t(1/2)=20.4 min) as a prospective radioligand for imaging brain norepinephrine transporters (NET) with positron emission tomography (PET). The uptake and distribution of radioactivity in brain following intravenous injection of each radioligand into cynomolgus monkey was examined in vivo with PET. After injection of (R)-[(11)C]OHDMI, the maximal whole brain uptake of radioactivity was very low (1.1% of injected dose; I.D.). For occipital cortex, thalamus, lower brainstem, mesencephalon and cerebellum, radioactivity ratios to striatum at 93 min after radioligand injection were 1.35, 1.35, 1.2, 1.2 and 1.0, respectively. After injection of [(11)C]CFMME, radioactivity readily entered brain (3.5% I.D.). Ratios of radioactivity to cerebellum at 93 min for thalamus, occipital cortex, region of locus coeruleus, mesencephalon and striatum were 1.35, 1.3, 1.3, 1.2 and 1.2, respectively. Radioactive metabolites in plasma were measured by radio-HPLC. (R)-[(11)C]OHDMI represented 75% of plasma radioactivity at 4 min after injection and 6% at 30 min. After injection of [(11)C]CFMME, 84% of the radioactivity in plasma represented parent at 4 min and 20% at 30 min. Since the two new hydroxylated radioligands provide only modest regional differentiation in brain uptake and form potentially troublesome lipophilic radioactive metabolites, they are concluded to be inferior to existing radioligands, such as (S,S)-[(11)C]MeNER, (S,S)-[(18)F]FMeNER-D(2) and (S,S)-[(18)F]FRB-D(4), for the study of brain NETs with PET in vivo.  相似文献   

18.
Specific Binding of [11C]Spiroperidol in Rat Brain In Vivo   总被引:2,自引:0,他引:2  
Spiroperidol labeled with carbon-11, a short-lived positron-emitting radionuclide, was used to determine the time course of specific binding of this radioligand to the neuroleptic receptor in vivo in the rat. The three major bran pools--specifically bound, nonspecifically bound, and free (unbound)--were determined over a 60-mm time course by a rapid filtration technique, utilizing (-)- and (+)-butaclamol pretreatments to assess total and nonspecifically bound activities, respectively, in striatum and cerebellum. The ratio of specifically to nonspecifically bound pools in the striatum was 4.1 at 30 min and 5.1 at 60 min. Thus [11C]spiroperidol may be useful for labeling neuroleptic receptors in vivo for serial studies using positron emission transaxial tomography.  相似文献   

19.
To determine the density of Na(+)-Pi symporters in brush border membranes (BBM) from rat renal cortex, [14C] phosphonoformic acid [( 14C] PFA), a competitive inhibitor of Na(+)-Pi cotransport, was employed as a probe. The [14C]PFA binding was measured in BBM vesicles (BBMV) under equilibrated conditions (extra-vesicular Na+, K+, and H+ = intravesicular Na+, K+, and H+) to avoid modulatory effects of these solutes. BBMV were preincubated in media without or with addition of molar excess of Pi (greater than 20 times) to determine the Pi-protectable PFA-binding sites, and then [14C] PFA binding was determined. Only the [14C]PFA binding in the presence of Na+ displaceable by an excess of Pi was saturated and was independent of intravesicular volume of BBMV. This value denoted as "Pi-protectable Na(+)-[14C]PFA binding," was analyzed by Scatchard plot showing BmaxPFA = 375 +/- 129 pmol of PFA/mg protein, KDPFA = 158 +/- 18 microM; the Hill coefficient was congruent to 1. For Na(+)-dependent binding of [3H]phlorizin, in the same BBMV, Bmax = 310 +/- 37 pmol/mg protein and KD V 2.2 +/- 0.5 microM. BBMV prepared from cortex of thyroparathyroidectomized rats infused with phosphaturic doses of parathyroid hormone (PTH) were compared with vehicle-infused controls. Administration of PTH resulted in decrease of BmaxPFA (-38%) and of Na(+)-gradient-dependent uptake of 32Pi (-35%), but KDPFA was not changed. Neither BmaxPhl and KDPhl for Na(+)-phlorizin binding, nor the Na(+)-gradient-dependent uptake of [3H]D-glucose differed between PTH-treated and control rats. We conclude: (a) measurement of Pi-protectable Na(+)-[14C]PFA binding determines numbers and affinity of Na(+)-Pi symporters in renal BBMV; (b) the affinity of PFA for Na(+)-Pi symporter is similar to apparent affinity for Pi (KmPi), as determined from measurements of Na(+)-gradient-dependent 32Pi uptake by BBMV; (c) both Na(+)-Pi symporter and [Na+]D-glucose symporters are present within renal BBM in a similar range of density; (d) PTH decreases the number of Na(+)-Pi cotransporters in BBMV commensurate with the parallel decrease of Na(+)-gradient-dependent Pi transport, whereas the affinity of Na(+)-Pi symporters for Pi is not changed. These observations support the hypothesis that PTH decreases capacity for Na(+)-dependent Pi reabsorption by internalization of Na(+)-Pi symporters in BBM of renal proximal tubules.  相似文献   

20.
《Life sciences》1994,55(11):PL225-PL232
The in vivo biodistribution profile of the novel sigma (σ) receptor ligand (+)-[C-11]-cis-N-benzyl-normetazocine ([C-11]-(+)-NBnNM) in mouse brain was examined. This radioligand displayed high brain uptake and a distribution consistent with the density of σ receptors. Brain radioactivity levels peaked at 15 min postinjection and were largely maintained (ca. 80% of maximal values) up to 90 min postinjection. Pretreatment with several different σ ligands (haloperidol, (+)-pentazocine, DuP 734, ifenprodil) effectively inhibited [C-11]-(+)-NBnNM binding in a dose-dependent manner in all brain regions. [C-11]-(+)-NBnNM binding sites were shown to be saturable with unlabeled (+)-NBnNM (ED50 = 0.02 mg/kg) and enantioselectively inhibited by the optical isomers of pentazocine. A blocking dose of the dopamine D2 antagonist spiperone (1 mg/kg) did not significantly inhibit [C-11]-(+)-NBnNM binding. Pretreatment with the phencyclidine (PCP) blocker 1-[1-(2-thienyl)cyclohexyl] piperidine (TCP) did not significantly alter total brain tissue radioactivity. Thus, [C-11]-(+)-NBnNM binds with high specificity and selectivity to σ receptors in vivo and offers excellent potential to study σ receptors in living human brain via positron emission tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号