首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yanagisawa A  Asakawa K  Yamamoto H 《Chirality》2000,12(5-6):421-424
(S,S)-Ethylenebis(tetrahydroindenyl)titanium chloride methoxide, (S, S)-(EBTHI)TiCl(OMe) (3) was synthesized from the corresponding titanium dichloride. The asymmetric aldol reaction of enol trichloroacetate of cyclohexanone 1 with aromatic aldehydes was studied in the presence of a catalytic amount of the chiral titanium complex 3, with the result that the optically active syn aldol adduct 2 was preferentially obtained with up to 91% ee.  相似文献   

2.
Polymeric and monomeric V(V) chiral salen complexes‐catalyzed enantioselective ethyl cyanoformylation of aldehydes using ethyl cyanoformate as a source of cyanide was accomplished in the presence of several basic cocatalysts viz., NaOH, KOH, basic Al2O3 and hydrotalcite. Excellent yield (>95%) of chiral ethyl cyanohydrincarbonate with high enantioselectivity up to 94% was achieved in 24–36 h when hydrotalcite was used as an additive. The polymeric catalyst 1 is more reactive than the monomeric catalyst 2 to produce chiral ethyl cyanohydrincarbonate in high optical purity. The chiral polymeric catalyst 1 and cocatalysts hydrotalcite and basic alumina used in this study were recoverable and recyclable several times with retention of its performance. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Kobayashi S  Ishitani H 《Chirality》2000,12(5-6):540-543
A novel binuclear chiral zirconium catalyst was successfully used in enantioselective Strecker reactions. The catalyst was readily prepared from zirconium t-butoxide (Zr(OtBu)4), (R)-6,6'-dibromo-1, 1'-bi-2-naphthol ((R)-6-Br-BINOL), and (R)-3,3'-dibromo-1, 1'-bi-2-naphthol ((R)-3-Br-BINOL) to form unique binuclear structure. It was revealed that a combination of (R)-6-Br-BINOL and (R)-3-Br-BINOL was essential in these asymmetric reactions and that much lower selectivities were obtained by using other combinations. Two-component (an imine and hydrogen cyanide (HCN)) and three-component (an aldehyde, an amine, and HCN) Strecker reactions proceeded smoothly in the presence of a catalytic amount of the chiral zirconium catalyst to afford the corresponding alpha-amino nitrile derivatives in high yields with high enantioselectivities.  相似文献   

4.
Chiral and achiral Jacobsen's catalysts in their homogeneous form or immobilized on Al‐MCM‐41 exhibit similar catalytic activity during diastereoselective epoxidation of limonene when in situ generated dimethyldioxirane is used as oxidizing agent. Experimental observations suggest that not only the catalyst chiral center but also the substrate chiral center participates in the preferential formation of most diastereomers. Remarkable turnover numbers (TON), up to 288, was achieved over the heterogeneous catalysts in comparison to their homogeneous counterparts (TON up to 46). Catalyst leaching rather than catalyst oxidative degradation was identified as the main source of catalyst deactivation during reutilization tests. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Fox ME  McCague R 《Chirality》2005,17(4):177-185
The performance of a catalyst used in asymmetric synthesis is likely to be dependent upon its stereoisomeric purity. An impurity was detectable by (31)P NMR in early development batches of the asymmetric hydrogenation catalyst [(S,S)-Me-BPE-Rh(COD)](+)BF(4) (-) made from the ligand bis((2S,5S)-2,5-dimethylphospholano)ethane [(S,S)-Me-BPE]. Its identity as a stereoisomer with one chiral and one meso-phospholane ring was deduced by comparison of the (31)P NMR spectra and GC traces of the ligand with a deliberately synthesized mixture of isomers. Interestingly, the impurity corresponded to a trans-meso isomer formed by thermal (200 degrees C) pyramidal inversion at phosphorus of the initially synthesized cis-meso-phospholane when the ligand was purified by distillation. Low levels of this trans-meso/chiral impurity do not significantly impair the enantioselectivity of the rhodium complex as an asymmetric hydrogenation catalyst, but high levels of stereochemical impurities resulted in a loss of both enantioselectivity and activity. Therefore it is indeed important to establish that a catalyst used in asymmetric catalysis is sufficiently stereoisomerically pure. Owing to strict control of the stereochemical purity of the key hexane-2,5-diol intermediate, the impurity is not detected in production batches.  相似文献   

6.
Several chiral Schiff-base ligands with sugar moieties at C-3 (3′) or C-5 (5′) of salicylaldehyde were synthesized from reaction of salicylaldehyde derivatives with diamine. These ligands coordinated with Mn(III) to afford the corresponding chiral salen-Mn(III) complexes characterized by FT-IR, MS, and elementary analysis. These complexes were used as catalysts for the asymmetric epoxidation of unfunctionalized alkenes. Only weak enantioselectivity is induced by the chiral sugar moieties at C-3 (3′) or C-5 (5′) in the case of absence of chirality in the diimine bridge moiety. It was also shown that the sugars at C-5 (5′) having the same rotation direction of polarized light as the diimine bridge in the catalyst could enhance the chiral induction in the asymmetric epoxidation, but the sugars with the opposite rotation direction would reduce the chiral induction.  相似文献   

7.
Chiral polymeric Mn(III) salen complexes were used efficiently for oxidative kinetic resolution of racemic secondary alcohols at room temperature. High chiral purity (ee; >99%) was achieved for the oxidative kinetic resolution of racemic secondary alcohols with 0.6 mol % catalyst loading in 60 min. The catalyst was easily recycled for five successive catalytic experiments.  相似文献   

8.
The enantioselective activation of nitroalkanes was attempted on the basis of the complexation between chiral guanidinium and nitronate through two hydrogen bonds. The proposed enantioselective activation was applied to the diastereo- and enantioselective Henry (nitroaldol) reaction of nitroalkanes with aldehydes using axially chiral guanidine bases as the catalyst. Optically active nitroaldol products were obtained in acceptable yields with fairly good enantio- and diastereoselectivities at low temperature.  相似文献   

9.
Liu H  Hoff BH  Anthonsen T 《Chirality》2000,12(1):26-29
Sodium borohydride reduction of 3-chloro-1-(2-thienyl)-1-propanone gave the corresponding racemic alcohol which was kinetically resolved with lipase B from Candida antarctica as catalyst to yield the chiral building blocks (S)-3-chloro-1-(2-thienyl)-1-propanol and the corresponding (R)-butanoate. The enantiopure chiral building blocks were converted into Duloxetine and its enantiomer.  相似文献   

10.
Zhou Y  Wang WH  Dou W  Tang XL  Liu WS 《Chirality》2008,20(2):110-114
A new C(2)-symmetric chiral catalyst 3,5-bis[(2S)-(hydroxy-diphenylmethyl)- pyrrolidin-1-ylmethyl]-1,3,4-oxadiazole was successfully synthesized by the reaction of 2,5-dichloromethyl-1,3,4-oxadiazole with (S)-alpha,alpha-diphenyl-2-pyrrolidinemethanol, and applied to the catalytic asymmetric reduction of prochiral ketones with borane. When the catalyst loading was 1 mol %, enantiomeric excesses of up to 86.8% and 94.5% were observed in reduction of aromatic and alpha-halo ketones, respectively.  相似文献   

11.
The synthesis of chiral glycerides starting from D- and L-serine.   总被引:1,自引:0,他引:1  
A method for synthesizing chiral glycerides starting from L- or D-serine is described. Optically-active serine (both enantiomers are commerically available) was transformed into glyceric acid by stereospecific diazotization. The configuration at carbon atom 2 was maintained during the reaction. The glyceric acid was then converted into optically pure isopropylideneglycerol - which is an important intermediate in the synthesis of mono-, di- and triglyderides - by esterification followed by acetalization with acetone and reduction with lithium aluminium hydride. Reaction of this intermediate with triphenylphosphine in tetrachloromethane followed by acid-catalysed hydrolysis and dehydrohalogenation provided optically-active glycidol (2,3-epoxy-1-propanol). The epoxy ring of an ester of glycidol and a fatty acid was then opened stereospecifically with retention of configuration by heating the glycidol ester in the presence of a second fatty acid and a catalyst. This yielded a chiral 1,3-diglyceride which could be converted into a chiral triglyceride.  相似文献   

12.
Mikami K  Ueki M  Matsumoto Y  Terada M 《Chirality》2001,13(9):541-544
Chiral tetranuclear Ti cluster, a cubic structure constituted of four Ti atoms and OHs, and six (R)-binaphthols (BINOL) bridged two Ti atoms as ligands, is shown to be a novel chiral Lewis acid catalyst for the [2+3] cycloaddition reaction with nitrones. The chiral Ti clusters with 7,7'-substituted (R)-BINOL ligands was synthesized to give enhanced enantiomeric excesses up to 78% ee.  相似文献   

13.
(1R,2R)-diaminocyclohexane (1) and (1R,2R)-diaminodiphenylethylenediamine (2) were used as building blocks for the synthesis of chiral tetradentate diquinolyl-diamine and related diquinolyl-dihydroimidazolium salts. A neutral chiral palladium(II) complex was synthesized by reaction of palladium acetate with the tetradentate diquinolyl diamine derived from 2 and used as a homogeneous catalyst for the Heck reaction between styrene and haloarenes. A chiral tridentate aminocarbene was generated in situ by deprotonation of the dihydroimidazolium salt derived from 1 and allowed to react with CuI to give a new chiral quinolyl-carbene copper(I) complex.  相似文献   

14.
Asymmetric amplification is a phenomenon in which the enantiomeric excess (ee) of a product is higher than that of a chiral auxiliary for a catalyst. We analyzed the mechanism of asymmetric amplification observed in the addition of diethylzinc (Et(2)Zn) to benzaldehyde (PhCHO) to synthesize 1-phenyl-1-propanol in the presence of trans-1,2-diaminocyclohexane bistriflamide (DCBF) and titanium tetraisopropoxide (TIOP). In a manner similar to the reaction in which 1-piperidino-3,3-dimethyl-2-butanol is a chiral auxiliary for the catalyst, when asymmetric amplification was observed, the ee of the product varied as the reaction progressed. The mechanisms of variation in ee in the two reactions, however, were different. No asymmetric amplification was observed when TIOP and PhCHO were added to a mixture of DCBF and Et(2)Zn, while the ee of the product was always higher than that of DCBF when PhCHO and Et(2)Zn were added to a mixture of DCBF and TIOP. In the latter case, the product ee decreased as the reaction progressed. The results indicate that DCBF forms inactive heterochiral complex causing an increase in the ee of DCBF in the solution, which is the chiral auxiliary for the catalyst. But the complex is not very stable and gradually dissociates due to the reaction with Et(2)Zn. As a result, the asymmetric amplification decreases as the reaction progresses.  相似文献   

15.
Biological enantioenriched chirality is a phenomenon that in living organisms, amino acids and carbohydrates typically have the same absolute configuration. Perhaps one of the earliest attempts to delineate the origins of this phenomenon was a theory known as asymmetric autocatalysis, a reaction in which the structures of the chiral catalyst and the product are the same, and in which the chiral product acts as a chiral catalyst for its own production. In theory, this would mean that small asymmetries in the product will propagate rapidly. However, autocatalysis also relies on the cross‐inhibition of chiral states, something that would not likely be possible on primordial Earth. But recently, theories on asymmetric autocatalysis have begun to resurface as more recent findings indicate that other mechanisms exist to stabilize the homochiral states. In this study, I propose an autocatalytic cycle, and using density functional theory, prove that (1) it is plausible on primordial Earth, and (2) it propagates arbitrary asymmetries in proline. Thus, facilitating asymmetry in proline and allowing access to a wide variety of asymmetric proline‐catalyzed reactions, including those involved in the synthesis of amino acids and carbohydrates from achiral precursors.  相似文献   

16.
The development of new methods for the recycling of chiral catalysts   总被引:2,自引:0,他引:2  
This article discusses different methods for the recycling of chiral catalysts, including heterogenization of the soluble catalyst on an insoluble inorganic or organic support, membrane filtration of homogeneously soluble catalysts, precipitation, and two-phase systems. In principle, all the methods presented enable the repeated use of a chiral catalyst without loss of activity and/or enantioselectivity. Examples will be given from laboratory and industrial processes, incuding hydrogenations, ketone reductions, epoxidations, dihydroxylations, diethylzinc additions and Diels-Alder reactions catalyzed by chemocatalysts or biocatalysts. Different approaches for cyanation, hydrogenation and epoxidation are compared. Data from industrial processes include the production of metalochlor, the production of (-)-menthol and the production of L-tert-leucine.  相似文献   

17.
A novel, optically active, cis-transoidal poly(phenylacetylene) bearing an L-proline residue as the pendant group (poly-1) was prepared by the polymerization of the corresponding monomer using a rhodium catalyst in water, and its chiroptical property was investigated using circular dichroism spectroscopy. Poly-1 showed intense Cotton effects in the UV-visible region of the polymer backbone in water, resulting from the prevailing one-handed helical conformation induced by the covalent-bonded chiral L-proline pendants and exhibited a unique helix-sense inversion in response to external, achiral, and chiral stimuli, such as the solvent and interactions with chiral small molecules. We found that poly-1 could enantioselectively trap 1,1'-2-binaphthol within its hydrophobic helical cavity inside the polymer in aqueous media and underwent an inversion of its helical sense in the presence of one of the enantiomers. The effect of the optical purity of 1,1'-2-binaphthol on the chiroptical properties of poly-1 was also investigated.  相似文献   

18.
A practical synthetic method for 2,2'‐disubstituted fluorinated binaphthyl derivatives was achieved using magnesium bis(2,2,6,6‐tetramethylpiperamide) [Mg(TMP)2], prepared from LiTMP (2 equiv) and MgBr2 (1 equiv), which allows for access to a variety of fluorinated binaphthyl compounds. The utility of the fluorinated binaphthyl backbone was evaluated in F10BINOL derived chiral mono‐phosphoric acid (R)‐ 19 as the chiral Brønsted acid catalyst. The catalyst (R)‐ 19 performs exceptionally well in the catalytic enantioselective imino‐ene reaction, demonstrating the potential of a fluorinated binaphthyl framework. Chirality 27:464–475, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
New chiral porphyrin imine was synthesized from (S)‐3‐benzyl‐2‐methyl‐4‐phenylbutanal according to dipyrromethane method using trifluoroacetic acid, BF3 etherate, and p‐chloranil. Manganese complex of this chiral porphyrin imine ligand was used as catalyst in the asymmetric epoxidation of styrene derivatives possessing different substituents. Styrene derivatives possessing electron withdrawing groups gave the corresponding chiral epoxides in high yield up to 98% and ee up to 99%. The mechanism for the catalytic asymmetric epoxidation was also discussed based on transfer of oxygen.  相似文献   

20.
When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号