首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldehyde fuchsin stains pancreatic B cell granules, hypophyseal basophils, goblet cell mucins, gastric chief cells, hyaline cartilage, and elastica. Neither the chemical structure of aldehyde fuchsin nor its staining mechanism is known. This study was undertaken to clarify the role of the fuchsin component of aldehyde fuchsin in its staining reaction. The major findings of this investigation include: 1) single N-methylation of the fuchsin molecule abolishes staining of unoxidized pancreatic B cells, although it does not prevent reaction of fuchsin with paraldehyde; 2) aldehyde fuchsin is probably a Schiff base condensation product of pararosaniline and acetaldehyde; 3) a Schiff base structure alone cannot account for aldehyde fuchsin staining of unoxidized pancreatic B cells; 4) a fully potent aldehyde fuchsin is possibly a Tris-Schiff base derivative of pararosaniline.  相似文献   

2.
This investigation was designed to clarify the role of the aldehyde component of aldehyde fuchsin in its staining reactions. Several aldehyde fuchsin analogs were prepared by using different aldehydes. The staining quality of these analogs and pararosaniline-HCl was compared with that of aldehyde fuchsin prepared with paraldehyde in the usual way. The major findings of this investigation include: 1) Aldehyde fuchsin staining of nonoxidized pancreatic B cells requires a stain prepared with either paraldehyde or acetaldehyde. 2) An aldehyde moiety is required for aldehyde fuchsin staining of strong tissue anions. 3) Staining of elastic tissue with aldehyde fuchsin analogs resembles staining of strong tissue anions more than staining of nonoxidized pancreatic B cells. Possible reaction mechanisms of aldehyde fuchsin with tissue substrates are discussed.  相似文献   

3.
Aldehyde fuchsin is a standard stain for the secretion granules of pancreatic B cells. The participation of either insulin or proinsulin in aldehyde fuchsin staining is in dispute. There is some evidence that permanganate oxidized insulin is stained by aldehyde fuchsin. Aldehyde fuchsin staining of unoxidized insulin has not been investigated adequately despite excellent staining results with tissue sections. Unoxidized insulin and proinsulin suspended by electrophoresis in polyacrylamide gels were fixed with Bouin's fluid and placed in aldehyde fuchsin for one hour. Because the unoxidized proteins were not stained by aldehyde fuchsin, it was concluded that neither insulin or proinsulin are responsible for the intense aldehyde fuchsin staining of unoxidized pancreatic B cell granules in tissue sections. A series of controlled experiments was undertaken to test the effects of fixatives, oxidation and destaining procedures on aldehyde fuchsin staining of insulin, proinsulin and other proteins immobilized in polyacrylamide gels. It was demonstrated that only oxidized proteins were stained by aldehyde fuchsin and that cystine content of the proteins had no apparent relation to aldehyde fuchsin staining. It was concluded that neither insulin nor proinsulin is likely to be responsible for the intense aldehyde fuchsin staining of unoxidized pancreatic B cell granules in tissue sections.  相似文献   

4.
The most distinctive property of aldehyde fuchsin is its staining of certain nonionic proteins and peptides in unoxidized cells and tissues. These substances include granules of pancreatic islet B cells, elastic fibers and hepatitis B surface antigen. Aldehyde fuchsin made from two different basic fuchsins, each certified by the Biological Stain Commission and labelled C.I. (Colour Index) No. 42500 (pararosanilin), did not stain pancreatic B cells at all. Stain Commission's records and retesting showed that each of the "faulty" basic fuchsins was not pararosanilin, but rosanilin, whose Colour Index number is 42510. These basic fuchsins were labelled with the wrong Colour Index number when packaged. Additional basic fuchsins were coded by V.M.E. and tested by R.W.M. for their capacity to make satisfactory aldehyde fuchsins. Only certain of these aldehyde fuchsins stained unoxidized pancreatic islet B cells. The same aldehyde fuchsins stained elastic fibers strongly. Each basic fuchsin whose aldehyde fuchsin was judged satisfactory proved to be pararosanilin. Aldehyde fuchsin solutions made from other basic fuchsins stained elastic fibers only weakly and did not stain pancreatic B cells at all in unoxidized sections. Each basic fuchsin whose aldehyde fuchsin was unsatisfactory proved to be rosanilin. It appears that only aldehyde fuchsin made from pararosanilin stains unoxidized pancreatic B cell granules dependably. We found that basic fuchsins from additional lots of Commission-certified pararosanilin and rosanilin were also labelled with incorrect Colour Index numbers when packaged. Steps were taken to prevent recurrences of such mislabelling which has made it difficult until now to correlate differences in the properties of pararosanilin and rosanilin. A table is provided of all basic fuchsins that have been certified by the Biological Stain Commission since 1963 when they began the practice of subdesignating basic fuchsins according to whether they are pararosanilins or nonpararosanilins. The consumer can readily determine from the certification number on the label the correct subdesignation of any Commission-certified basic fuchsin listed here. Until now, mislabelling of some lots of pararosanilin as rosanilin and vice-versa has confused and frustrated the users of basic fuchsins in other applications such as the carbol fuchsin staining of tubercle bacilli and certain cytochemical tests, e.g. esterase and acid phosphatase, that utilize hexazotized pararosanilin as a coupling reagent. Consumers experiencing trouble with any Commission-certified dye should look to the Biological Stain Commission for help. This is an important reason for purchasing, whenever possible, only Biological Stain Commission certified dyes.  相似文献   

5.
Gomori reported that aldehyde fuchsin stained the granules of pancreatic islet beta cells selectively and without need of permanganate pretreatment. Others adopted permanganate oxidation because it makes staining faster though much less selective. All aldehyde fuchsins are not equivalent, being made from "basic fuchsin" whose composition may vary from pure pararosanilin to one of its methylated homologs, rosanilin or a mixture. Mowry et al. have shown that only aldehyde fuchsin made from pararosanilin stained unoxidized pancreatic beta cells (PBC). Aldehyde fuchsins made from methylated homologs of pararosanilin stain PBC cells only after oxidation, which induces basophilia of other cells as well; these are less selective for PBC. Is the staining of PBC by aldehyde fuchsins due to insulin? Others have been unable to stain pure insulin with aldehyde fuchsins except in polyacrylamide gels and only after oxidation with permanganate. They have concluded that insulin contributed to the staining of oxidized but not of unoxidized PBC. This view denies any inherent validity of the more selective staining of unoxidized PBC cells as an indication of their insulin content. We describe here indisputable staining of unoxidized pure insulins by aldehyde fuchsin made with pararosanilin. Dried spots of insulin dissolved in the stain unless fixed beforehand. Spots of dried insulin solution made on various support media and fixed in warm formalin vapor were colored strongly by the stain. Insulin soaked Gelfoam sponges were dried, fixed in formalin vapor and processed into paraffin. In unoxidized paraffin sections, presumed insulin inside gel spaces was stained strongly by aldehyde pararosanilin. Finally, the renal tubules of unoxidized paraffin sections of kidneys from insulin-injected mice fixed in either Bouin's fluid or formalin were loaded with material stained deeply by aldehyde pararosanilin. This material was absent in renal tubules of mice receiving no insulin. The material in the spaces of insulin-soaked gels and in the renal tubules of insulin-injected mice was proven to be insulin by specific immunostaining of duplicate sections. The same material was also stained by aldehyde pararosanilin used after permanganate. So, this dye stains oxidized or unoxidized insulin if fixed adequately.  相似文献   

6.
Gomori reported that aldehyde fuchsin stained the granules of pancreatic islet beta cells selectively and without need of permanganate pretreatment. Others adopted permanganate oxidation because it makes staining faster though much less selective. All aldehyde fuchsins are not equivalent, being made from “basic fuchsin” whose composition may vary from pure pararosanilin to one of its methylated homologs, rosanilin or a mixture. Mowry et al. have shown that only aldehyde fuchsin made from pararosanilin stained unoxidized pancreatic beta cells (PBC). Aldehyde fuchsins made from methylated homologs of pararosanilin stain PBC cells only after oxidation, which induces basophilia of other cells as well; these are less selective for PBC.

Is the staining of PBC by aldehyde fuchsins due to insulin? Others have been unable to stain pure insulin with aldehyde fuchsins except in polyacrylamide gels and only after oxidation with permanganate. They have concluded that insulin contributed to the staining of oxidized but not of unoxidized PBC. This view denies any inherent validity of the more selective staining of unoxidized PBC cells as an indication of their insulin content.

We describe here indisputable staining of unoxidized pure insulins by aldehyde fuchsin made with pararosanilin. Dried spots of insulin dissolved in the stain unless fixed beforehand. Spots of dried insulin solution made on various support media and fixed in warm formalin vapor were colored strongly by the stain. Insulin soaked Gelfoam® sponges were dried, fixed in formalin vapor and processed into paraffin. In unoxidized paraffin sections, presumed insulin inside gel spaces was stained strongly by aldehyde pararosanilin. Finally, the renal tubules of unoxidized paraffin sections of kidneys from insulin-injected mice fixed in either Bouin's fluid or formalin were loaded with material stained deeply by aldehyde pararosanilin. This material was absent in renal tubules of mice receiving no insulin. The material in the spaces of insulin-soaked gels and in the renal tubules of insulin-injected mice was proven to be insulin by specific immunostaining of duplicate sections. The same material was also stained by aldehyde pararosanilin used after permanganate. So, this dye stains oxidized or unoxidized insulin if fixed adequately.  相似文献   

7.
The resorcin fuchsin staining solution was prepared by dissolving 1 gm of the dry dye (Chroma) in 98 ml of 70% ethanol acidified by 2 ml of concentrated HCI. When applied to paraffin sections of vertebrate hypothalamus fixed in a modified Bouin's fluid (0.5% trichloroacetic acid replacing 5% acetic), the solution stained neurosecretory cells in a manner comparable to staining by Gomori's aldehyde fuchsin. The resorcin fuchsin solution requires no ripening and is said to keep for months. It showed no deterioration in the 20 day period of testing. Optional fixatives are: unmodified Bouin's, Heidenhain's SUSA, and alcoholic trichloroacetic acid.  相似文献   

8.
R W Mowry 《Stain technology》1978,53(3):141-154
Successful production of aldehyde fuchsin (AF) having the unique properties described by Gomori depends on each of many critical variables. AF made from basic fuchsins which contain mainly rosanilin (C.I. 42510) do not stain properly-fixed pancreatic B cells, pituitary basophils, or elastic fibers in unoxidized sections. AF made from basic fuchsins containing mainly pararosanilin (C.I. 42500) stains these entities strongly. Substances stained by AF without oxidation fall into two classes: 1) nonacidic peptides and proteins, most of which contain half-cystines, and 2) polyanions, particularly when sulfated. Group 2 substances stain rapidly, Group 1 substances stain slowly. Many modifications of aldehyde fuchsin have been described. Modified aldehyde fuchsins (MAFs) differ in the kind of aldehyde and in the amount of aldehyde and hydrochloric acid used in their formulation; they differ also in the temperature and duration of the ripening necessary before they can be used. If microsections are first oxidized by acid permanganate or other oxidant, MAF staining of pancreatic B cells, pituitary basophils and other substances containing cystines is speeded and intensified. Most modified methods prescribe oxidation, but the author's does not. The chemical basis, final result and potential side-reactions of oxidation methods (OXMAF) differ from those of direct methods (DIMAF) such as the author's. DIMAF staining is slower but inherently simpler and less destructive. The time required for optimal staining with DIMAF depends on the potency of the stain, which in turn depends on how the stain was made and its age. Detection of DIMAF--reactive peptides and proteins may be hampered by the strong staining of polyanions. This can be remedied if the polyanions are first stained with Alcian blue (AB) or other durable basic dye of contrasting color resistant to acid ethanol. Experiences with the AB-DIMAF staining of pancreatic B cells, pituitaries and elastic fibers in formalin-fixed human tissues are detailed. Proper control of the variables which affect MAF will insure useful and reliable results either directly or after oxidation. Authors and editors are urged to be more careful hereafter to distinguish the results of DIMAF from those of OXMAF methods. Published reports should always specify the parameters that affect the properties of MAF. In OXMAF methods the steps intervening between oxidation and staining should be spelled out. Such care should help dispel the confusion and uncertainty which cloud the use and reputation of aldehyde fuchsin at present. This unique dye deserves wider and wiser use.  相似文献   

9.
The author describes the morphology and distribution of the neurosecretory cells in the supraoesophageal ganglion of the adult female Culex pipiens molestus, using paraldehyde fuchsin and paraldehyde thionine-paraldehyde fuchsin as vital staining techniques. The brain of Culex pipiens molestus has three regions (the proto-, deuto- and tritocerebrum) in which principally two types of neurosecretory cells (A and B) can be detected. Both A (dark) and B (light) cells are to be found in the protocerebrum, where they are termed medial neurosecretory cells, as they are distributed in the pars intercerebralis and only a few occur more laterally. A small group of type A and B neurosecretory cells is to be found in the posterior part of the brain (the tritocerebrum). These cells display characteristics differences in their tinctorial affinity.  相似文献   

10.
The staining mechanisms of Gomori's aldehyde-fuchsin are not yet fully understood. It seemed therefore timely to review the history of this dye class in context with current dye and aldehyde chemistry. In 1861 Lauth treated basic fuchsin with acetaldehyde. This dye became known as Aldehyde Blue, but consisted of violet and blue dyes. Schiff (1866) studied several aldehyde-fuchsins; these compounds contained two molecules of dye and three molecules of aldehyde. Acetaldehyde-fuchsin prepared according to Schiff's directions showed staining properties similar to those of Gomori's aldehyde-fuchsin. This dye class was soon superseded by new dyes more suitable for textile dyeing, and chemical investigations of aldehyde-fuchsins ceased around the turn of the century. Gomori's aldehyde-fuchsin has been regarded as a Schiff base. However, according to chemical data, low molecular aliphatic aldehydes and aromatic amines tend to form condensation products. Correlations of chemical and histochemical observations suggest such processes during aging of dye solutions. Models of dimers and polymers of aldehyde-fuchsin could be built without steric hindrance. The nature of the bonds formed by various components of aldehyde-fuchsin solutions is not clear. However, cystine in proteins, e.g. in basement membranes, apparently does not play a role in the binding of aldehyde-fuchsin by unoxidized Carnoy- or methacarn-fixed sections.  相似文献   

11.
Summary The staining mechanisms of Gomori's aldehyde-fuchsin are not yet fully understood. It seemed therefore timely to review the history of this dye class in context with current dye and aldehyde chemistry. In 1861 Lauth treated basic fuchsin with acetaldehyde. This dye became known as Aldehyde Blue, but consisted of violet and blue dyes. Schiff (1866) studied several aldehyde-fuchsins; these compounds contained two molecules of dye and three molecules of aldehyde. Acetaldehyde-fuchsin prepared according to Schiff's directions showed staining properties similar to those of Gomori's aldehyde-fuchsin. This dye class was soon superseded by new dyes more suitable for textile dyeing, and chemical investigations of aldehyde-fuchsins ceased around the turn of the century. Gomori's aldehyde-fuchsin has been regarded as a Schiff base. However, according to chemical data, low molecular aliphatic aldehydes and aromatic amines tend to form condensation products. Correlations of chemical and histochemical observations suggest such processes during aging of dye solutions. Models of dimers and polymers of aldehyde-fuchsin could be built without steric hindrance. The nature of the bonds formed by various components of aldehyde-fuchsin solutions is not clear. However, cystine in proteins, e.g. in basement membranes, apparently does not play a role in the binding of aldehyde-fuchsin by unoxidized Carnoy- or methacarn-fixed sections.  相似文献   

12.
Recent investigations strongly suggest the elaboration of a third pancreatic hormone by the D cell and the existence of cells which show the staining properties of both B and D cells. Demonstration of these and all other islet cells in a single section is possible by the following staining sequence: (1) of D cells by silver or toluidine blue, (2) of B cells by pseudoisocyanin, and (3) empirical staining of all islet cells together by aldehyde fuchsin, ponceau de xylidine, acid fuchsin and light green. Difficulties in embedding compact pancreatic tissue can be overcome by dehydrating to 80% ethanol, followed by tetrahydrofurane as the intermediate fluid to paraffin infiltration.  相似文献   

13.
Summary Oxidation and bromination of mouse kidney JG cell-granules result in the production of cysteic acid from cystine; cysteic acid is capable of taking up rapidly and selectively certain basic triphenyl methane dyes including aldehyde fuchsin at lower pH levels.After treatment with periodic acid, bromine and hydrochloric acid, the JG granules or the nuclear chromatin also take up the basic triphenyl methane dyes (including aldehyde fuchsin) which contain amino groups, probable as a result of the production of aldehyde groups. Basic triphenyl methane lacking amino groups does not react with aldehydes.Some substance present in JG granules could be stained by aldehyde fuchsin after prior oxidation; HCl methyl violet 2B was taken up both with or without prior oxidation. Only strong methylation completely abolished these affinities which were restored after demethylation. These reactions are attributed to cystine.The staining of JG granules with dilute aldehyde fuchsin and dilute methyl violet 2B is not affected by oxidation, bromination, aldehyde blocking and hydrolysis; these reactions are abolished by mild methylation, but restored by subsequent saponification. These staining properties are due to the presence of carboxylic acid in JG granules.The positive PAS reaction of JG granules is due to the presence of 1.2-glycol in the same granules.  相似文献   

14.
The stain is applied routinely to tissues fixed in 10% buffered formalin (pH near 7.0) or in Bouin's fluid. Bring paraffin section to water as usual and mordant 72 hr in 5% CrCl3 dissolved in 5% acetic acid. Wash in water and in 70% alcohol and stain 6 hr. Formula of staining solution: new fuchsin, 1% in 70% alcohol, 100 ml; HCl, conc., 2 ml and paraldehyde, 2 ml, mixed together and added to the dye solution; let stand 24 hr before use. After staining, wash in running tap water 5-10 min, rinse in distilled water and counterstain if desired. Dehydration in alcohol, clearing and covering completes the process. When the paraldehyde is obtained from a freshly opened bottle, standardized staining times can be used and thus eliminate the necessity of differentiating individual slides. The granules of beta cells stained deep blue to purple and were demonstrated in the pancreatic islet of man, dog, mouse, frog, guinea pig and rabbit.  相似文献   

15.
In each optic lobe and optic peduncle of two aquatic beetles viz. Dineutes indicus and Cybister rugulosus the neurosecretory cells are observed with the help of various histochemical techniques. These cells are arranged to form a discrete group. A group in the optic lobe of both species contains about 25 to 30 neurosecretory cells. On the basis of staining properties the neurosecretory cells are classified into A and B types. These cells stain with chrome haematoxylin-phloxine and paraldehyde fuchsin, but do not stain with azan. Histochemically, the neurosecretory material is positive for proteins and shows a negative reaction for 1,2-glycols. The cells show variations in RNA contents in correlation with the state of secretory activity. Axons of the neurosecretory cell group of the optic lobe are observed directed to the optic peduncle. The axonal tract from neurosecretory cells in the optic peduncle runs towards the lateral margin of the brain.  相似文献   

16.
Aldehyde fuchsin, pseudoisocyanin and toluidine blue, histochemical dyes reported to be specific for insulin-containing granules of the pancreatic beta cell, were applied to insulin fixed in polyacrylamide gel by disc electrophoresis. Two major and four minor bands were resolved as demonstrated by staining with amidoschwarz; only the two major bands, were stained by aldehyde fuchsin. The addition of serum did not affect this reaction. Serum or insulin components gave no metachromatic reactions to the other stains. Under the conditions applied, aldehyde fuchsin is the only one of these dyes specific for insulin in this, system, but this stain is not sufficiently sensitive to detect normal serum levels of the hormone.  相似文献   

17.
Summary Granular cells (cells crowded with colourless granules staining with paraldehyde fuchsin according to Gomori-Gabe and not containing calcium) are independent cells in the connective tissue of Helix pomatia. Histochemical data suggest that the granules are rich in sulfhydryl-containing proteins, but lack biogenic monoamines. Electron microscopic investigations confirm the supposed secretory activity of the granular cells. Secretory proteins are presumed to be synthetized in the endoplasmic reticulum and condensed in the Golgi apparatus giving rise to the granules. Extrusion occurs by exocytosis.Electrophoresis of homogenates, prepared from tissues containing numerous granular cells, results in the separation and identification of a secretory protein from the granular cells. An electrophoretically homologous protein is recognized in the hemolymph, but in very small quantities.Our findings and the work of others suggest the involvement of granular cells in neuroendocrine events.The author is indebted to Prof. Dr. D. Kuhlmann for suggesting the problem and for his valuable criticism during the investigation. I would like to thank Mr. J.N. Howell, who helped with the English.Part of this work has been supported by the Stiftung Volkswagenwerk and by the Deutsche Forschungsgemeinschaft  相似文献   

18.
The thiosulphation-aldehyde fuchsin (TAF) method for the insulin-producing B cells can be followed by the Grimelius silver impregnation for the argyrophil cells. This double staining is useful to study, in normal and pathological tissues, the spatial distribution of the two main endocrine cell populations of the pancreatic islets. A treatment with potassium ferrocyanide has been found to enhance the argyrophilia of A cells.  相似文献   

19.
This is a brief overview of the goals, evolution, and present status of the Biological Stain Commission. The main function of the Commission is the testing and certification of dye batches intended for biological applications. The testing is supported by charges made for batch testing and by the sale of certification labels affixed to individual dye containers. Submission of dyes for testing is voluntary, depending on the cooperation of the companies who sell them and the consumers who buy them. The supportive role of the University of Rochester School of Medicine and Dentistry—both past and present—is not well known and should be. Increasingly federal regulations affect the production, availability, and cost of dyes. Commission income from the sale of labels has decreased in recent years. Continuation of its work requires changes that will produce more income. Much dye is now sold in solutions instead of dry powders. The value of using Stain Commission certified dyes whenever possible is illustrated by the case of basic fuchsin. Years ago this dye was a mixture. Most basic fuchsin now marketed consists mainly of either pararosanilin (Colour Index No. 42500) or rosanilin (C.I. No. 42510). The Biological Stain Commission discovered that some certified batches of both pararosanilin and rosanilin sold as “basic fuchsin” had incorrect C.I. numbers on the labels. Sometimes that caused failure of the aldehyde fuchsin stain. Unless made with pararosanilin, aldehyde fuchsin does not stain pancreatic islet B-cells, elastic fibers, and hepatitis B surface antigen in unoxidized sections. Mislabelling by packagers may interfere with other applications of pararosanilin and rosanilin. The Commission acted to publicize and correct this problem. Biological Stain Commission publications help educate microscopists and histotechnologists about dyes and their best use. Stain Commission representatives from member scientific societies provide valuable input about changes in the availability and quality of such dyes as hematoxylin and others; they also provide useful feedback to their societies about dye problems. Each new generation of biologists and histotechnologists should be taught the importance of using only Stain Commission certified stains when available. They should be taught also to notify the Stain Commission whenever they experience problems with any certified dye.  相似文献   

20.
Various combinations of the oxidation method for demonstrating keratin in shell material of amphistomes were tried. Acidified permanganate worked more efficiently than performic and peracetic acids, and Alcian blue and aldehyde fuchsin excelled other basic dyes for subsequent staining. For the permanganate-Alcian blue reaction, sections of material fixed in Susa or Bouin were oxidized in 0.3% permanganate in 0.3% H2SO4 for 5 min., decolourized in 1% oxalic acid, stained in 3% Alcian blue in 2 N H2SO4 and counterstained with eosin. The shell globules stained a deep blue. For permanganate aldehyde fuchsin staining, the sections were stained in aldehyde fuchsin for 1 hr, after oxidation with permanganate. The shell globules then stained a deep magenta. The catechol and fast red reactions were negative in amphistomes and the specimens lack the characteristic amber colour due to quinone tanning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号