首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.  相似文献   

2.
Natural cellulose fibers from soybean straw   总被引:1,自引:0,他引:1  
This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.  相似文献   

3.
Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers   总被引:1,自引:0,他引:1  
Cotton and lyocell fibers were oxidized with sodium hypochlorite and catalytic amount of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO), under various conditions. Water-insoluble fractions, collected after TEMPO-mediated oxidation, were analyzed and characterized in terms of weight loss, aldehyde and carboxyl contents, and sorption properties. Aldehyde and carboxyl groups were introduced into the oxidized cotton up to 0.321 and 0.795 mmol/g, and into the oxidized lyocell up to 0.634 and 0.7 mmol/g, respectively, where weight loss was generally lower than 12% for cotton and 27% for lyocell. Oxidized cotton and lyocell were shown to exhibit 1.55 and 2.28 times higher moisture sorption than the original fibers, respectively, and water retention values up to about 85% for cotton and 335% for lyocell, while iodine sorption values of oxidized fibers were lower up to 35% for cotton and up to 18% for lyocell than the original fibers.  相似文献   

4.
Velvet leaf (Abutilon theophrasti) that is currently considered a weed and an agricultural problem could be used as a source for high quality natural cellulose fibers. The fibers obtained from the velvet leaf stems are mainly composed of approximately 69% cellulose and 17% lignin. The single cells in the fiber have lengths of approximately 0.9 mm, shorter than those in common bast fibers, hemp and kenaf. However, the widths of single cells in velvet leaf fibers are similar to the single cells in hemp and kenaf. The fibers exhibited breaking tenacity from 2.4 to 3.9 g/denier (325-500 MPa), breaking elongation of 1.6-2.4% and Young's modulus of 140-294 g/denier (18-38 GPa). Overall, velvet leaf fibers have properties similar to that of common bast fibers such as hemp and kenaf. Velvet leaves fibers could be processed on the current kenaf processing machineries for textile, composite, automotive and other fibrous applications.  相似文献   

5.
The crystalline and microstructure of the regenerated cellulose fibers prepared from different solvents and technology processes were investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the crystal orientation, crystallinity of Lyocell and IL-cell fibers were higher than those of Viscose and Newdal fibers. The size of micro-voids located in the cross-section of regenerated cellulose fibers was analyzed based on the results of SAXS. And the technology process had little effect on the radius of the micro-voids. The micro-voids in Viscose and Newdal fibers have longer length (L) and greater misorientation (BΦ) than that in Lyocell and IL-cell fibers. This reveals that the average void volumes of Viscose and Newdal fibers were larger. Furthermore, the regenerated cellulose fibers from dry-jet-wet-spinning process exhibited completely a higher E-modulus, tenacity than the fibers spun by wet-spinning method did.  相似文献   

6.
Preparation and characterization of cellulose nanocrystals from rice straw   总被引:2,自引:0,他引:2  
Pure cellulose have been isolated from rice straw at 36% yield and hydrolyzed (64% H2SO4, 8.75 mL/g, 45 °C) for 30 and 45 min to cellulose nanocrystals (CNCs), i.e., CNC30 and CNC45, respectively. CNC45 was smaller (11.2 nm wide, 5.06 nm thick and 117 nm long) than CNC30 (30.7 nm wide, 5.95 nm thick and 270 nm long). Freeze-drying of diluted CNC suspensions showed both assembled into long fibrous structures: ultra-fine fibers (∼400 nm wide) from CNC45 and 1-2 μm wide broad ribbons interspersed with CNC clusters from CNC30. The self-assembled fibers from CNC30 and CNC45 were more highly crystalline (86.0% and 91.2%, respectively) and contained larger crystallites (7.36 nm and 8.33 nm, respectively) than rice straw cellulose (61.8%, 4.42 nm). These self-assembled fibers had essentially nonporous or macroporous structures with the CNCs well aligned along the fiber axis. Furthermore, the self-assembled ultra-fine fibers showed extraordinary structural stability, withstanding vigorous shaking and prolong stirring in water.  相似文献   

7.
Green composites from sustainable cellulose nanofibrils: A review   总被引:6,自引:0,他引:6  
Green composites are materials having ecofriendly attributes that are technically and economically feasible while minimizing the generation of pollution. In this context it refers to the combination of fully degradable fibers mostly cellulosic materials and natural resins to develop green composite materials. In the past decade, overdependence on petroleum products (synthetic polymers, resins, etc.) has consistently increased and on account of this, the researchers are now focusing more on green materials specially cellulosics. Cellulosic fibers in micro and nano scale are attractive to replace man-made fibers as reinforcement to make environmentally friendly green products. In this study, we will discuss the processing, extraction, properties, chronological events and applications of cellulose and cellulosic-based nanocomposite materials. Cellulosic nanocomposites are currently considered one of the most promising areas of scientific and technological development in the field of plant products. The aim of this review is to demonstrate the current state of development in the field of cellulose nanofibril based green composites research and application through examples.  相似文献   

8.
We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels.  相似文献   

9.
Regenerated cellulose-silk fibroin blends fibers   总被引:1,自引:0,他引:1  
Fibers made of cellulose and silk fibroin at different composition were wet spun from solutions by using N-methylmorpholine N-oxide hydrates (NMMO/H(2)O) as solvent and ethanol as coagulant. Different spinning conditions were used. The fibers were characterized by different techniques: FTIR-Raman, scanning electron microscopy, wide-angle x-ray diffraction, DSC analysis. The results evidence a phase separation in the whole blends compositions. The tensile characterization, however, illustrates that the properties of the blends fibers are higher respect to a linear behaviour between the pure polymers, confirming a good compatibility between cellulose and silk fibroin. The fibers containing 75% of cellulose show better mechanical properties than pure cellulose fibers: modulus of about 23 GPa and strength to break of 307 MPa.  相似文献   

10.
In this work, the moulded cellulose fibers/MPU-20 composites (CFMCs) with apparent specific gravity lower than 100 kg/m3 and thickness of 20–200 mm have been successfully manufactured using a new design of steam injection technology and equipment. It was found that the CFMCs have good cushioning properties, with a cushion factor lower than 4. Two yield deformation stages were observed in the compressive process. Compressive stress–strain and cushion factor-stain curves were measured as a function of steam injection pressure, transmission time, holding time, MPU-20 resin dosage and apparent specific gravity. Chemical groups, crystallinity, and thermal properties of samples were studied through the use of FTIR spectroscopy, X-ray diffraction (XRD), and DTA–TGA. In addition, the microstructure and morphology were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM).  相似文献   

11.
Four hemicelluloses and cellulose fractions were extracted with 10% KOH or 7.5% NaOH at 15°C for 16 h and with 24% KOH or 17.5% NaOH at 15°C for 2 h from defatted, protein and pectin free, lignified or delignified sugar beet pulp (SBP). There was no significant difference in the yield and sugar composition of isolated hemicelluloses and cellulose obtained from four different procedures. 7.5% NaOH extraction at 15°C for 16 h from lignified SBP gave a slightly higher yield of hemicelluloses (10.96%), while 24% KOH extraction at 15°C for 2 h from delignified SBP produced the highest yield of cellulose (18.35%). Molecular-average weights ranged from 88 850 to 91 330 Da for the hemicelluloses obtained from lignified SBP, and 21 620–21 990 Da for the hemicelluloses isolated from delignified SBP. The neutral sugar composition of the hemicelluloses consisted of glucose, arabinose, galactose, xylose, and minor quantities of rhamnose and mannose. The infrared spectra showed an absorption band at 900 cm−1, indicating some amounts of β-linked polysaccharides. Besides ferulic and p-coumaric acids, six other phenolics were also identified in the mixture of alkaline nitrobenzene oxidation of associated lignin in the isolated hemicelluloses and cellulose fractions.  相似文献   

12.
This work introduces, for the first time worldwide, an advanced nanocomposite involving two additives – a nanoadditive and a conventional additive – within a matrix of natural cellulose fibers. The first additive (the nanoadditive) is sucrose, which incorporates the nanoporous structure of the cell walls of cellulose fibers. The second additive (the conventional additive) is kaolin, the famous paper filler. Kaolin is enmeshed between the adjacent cellulose fibers. This advanced paper nanocomposite was prepared by simple techniques.

The present work shows, for the first time, that sucrose can overcome the ultimate fate of deterioration in strength of paper, due to addition of inorganic fillers such as kaolin. This deterioration was counteracted by incorporating cellulose fibers with sucrose, which leads to incorporation beating of the fibers, and thus increases the strength of the produced paper nanocomposites. In addition, sucrose was proven – for the first time – to act as retention aid for inorganic fillers such as kaolin. We called this phenomenon incorporation retention to differentiate it from the conventional types of retention of inorganic fillers.

Recent studies, by the authors and others, have shown that incorporating cellulose fibers, with sucrose, leads to paper nanocomposites of enhanced strength (breaking length). Also, sucrose is privileged by its small size (0.8 nm), substantial hydrogen bonding capacity, low cost, and abundance. Therefore, sucrose was chosen as a nanoadditive in this work. The present study shows that the nanoadditive sucrose may find its use as a new retention aid and strength promoter in papermaking.  相似文献   


13.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   

14.
Summary Cotton fibers are often utilized as a model system to investigate cellulose biosynthesis and cell wall elongation. In this study, we grew cotton fibers in vitro, with ovules dissected at day zero post anthesis as the expiant source, in the presence of three herbicides that inhibit cellulose biosynthesis. Cultures were sampled for electron microscopy and immunocytochemistry 1–2 days after beginning the treatments. After dichlobenil treatment, the fibers were much shorter than the controls and assumed a variety of abnormal shapes, from shortened versions of the control fiber to nearly spherical. The inner layers of the fiber wall often contained juxtaposed electron-translucent and -transparent areas; this layer reacted strongly with antibodies to callose. Cellulase-gold labeling in these newly developed fibers grown in the presence of dichlobenil was present at only about 3% of the control labeling. After treatment with either isoxaben or flupoxam, the fibers assumed spherical shapes and frequently (more than 60% of fibers) exhibited a new cell plate within the fiber, indicating that cell division had occurred, a process that rarely occurred in the controls. Unlike the dichlobenil-treated fibers, fibers grown in the presence of isoxaben or flupoxam contained an extensive accumulation of chiefly deesterified pectins, replacing the entire wall with an elaborated version of the pectin sheath found in control cotton fibers. These data indicate that all three herbicides are effective disrupters of cellulose biosynthesis and cause radical changes in cell wall structure and composition. Moreover, these data indicate that the composition of the walls may influence indirectly cell cycle kinetics, keeping these fiber cells in a more meristematic mode.  相似文献   

15.
Biotransformation of hop aroma terpenoids by ale and lager yeasts   总被引:1,自引:0,他引:1  
Terpenoids are important natural flavour compounds, which are introduced to beer via hopping. It has been shown recently that yeasts are able to biotransform some monoterpene alcohols. As a first step towards examining whether yeasts are capable of altering hop terpenoids during the brewing of beer, we investigated whether they were transformed when an ale and lager yeast were cultured in the presence of a commercially available syrup. Both yeasts transformed the monoterpene alcohols geraniol and linalool. The lager yeast also produced acetate esters of geraniol and citronellol. The major terpenoids of hop oil, however, were not biotransformed. Oxygenated terpenoids persisted much longer than the alkenes.  相似文献   

16.
Several compounds were tested for their ability to inhibit the in-vivo synthesis of cellulose and other cell-wall polysaccharides in fibers of cotton (Gossypium hirsutum L.) developing on in-vitro cultured ovules. Inhibitory effects were measured by the ability of the compounds to inhibit the incorporation of radioactivity from [U-14C]glucose into these cell-wall polymers. Of the compounds surveyed, 2,6-dichlorobenzonitrile (DCB) was the most effective and specific one for its effects on cellulose synthesis when compared to its effect on the synthesis of other cell-wall components. At 10 M DCB caused 80% inhibition of cellulose synthesis, and the effect was reversed upon removal of the DCB, with recovery to 90% of the control rate. Two analogs of DCB, 2-chloro-6-fluorobenzonitrile and 2,6-dichlorobenzene carbothiamide, were as specific and nearly as effective as DCB with respect to their effects on cellulose synthesis. Coumarin, generally regarded as an inhibitor of cellulose synthesis in other plant systems, was effective in cotton fibers in millimolar concentrations and, like DCB, was relatively specific with regard to its effect on cellulose synthesis. DCB and coumarin inhibited the synthesis of both primary and secondary wall cellulose. Bacitracin, an inhibitor of the cycling of phosphorylated polyprenols involved in cell-wall synthesis in bacteria, and ethylenediaminetetracetic acid (EDTA) and ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid (EGTA), chelators of civalent cations, were also effective, although only at relatively high concentrations, in inhibiting incorporation of radioactivity into cellulose.Abbreviations DCB 2,6-dichlorobenzonitrite - CFB 2-chloro-6-fluorobenzonitrile - EDTA ethylenediaminetetracetic acid - EGTA ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid  相似文献   

17.
The cellulose-binding domain (CBD) is the second important and the most wide-spread element of cellulase structure involved in cellulose transformation with a great structural diversity and a range of adsorption behavior toward different types of cellulosic materials. The effect of the CBD from Clostridium cellulovorans on the supramolecular structure of three different sources of cellulose (cotton cellulose, spruce dissolving pulp, and cellulose linters) was studied. Fourier-transform infrared spectroscopy (FTIR) was used to record amides I and II absorption bands of cotton cellulose treated with CBD. Structural changes as weakening and splitting of the hydrogen bonds within the cellulose chains after CBD adsorption were observed. The decrease of relative crystallinity index of the treated celluloses was confirmed by FTIR spectroscopy and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to confirm the binding of the CBD on the cellulose surface and the changing of the cellulose morphology.  相似文献   

18.
The effect of Hop latent virus (HpLV), Hop mosaic virus (HpMV), and Prunus necrotic ring spot virus [PNRSV (apple, A, and intermediate, I, serotypes)], on the survival of softwood cuttings, the vigour (height) of early season growth, cone yield, and the levels of brewing organic acids in mature plants, was assessed in four hop (Humulus lupulus) cultivars in Tasmania, Australia. Virus infections were associated with an increase in the mortality of softwood cuttings following propagation. In all cultivars, height of early growth was a poor indicator of the effect of viruses on cone yield and levels of brewing organic acids (alpha and beta acids). In cv. ‘Nugget’, infection by the virus combinations studied was not associated with reductions in cone yield, however plants infected by PNRSV‐I, in 2000, had 11% lower alpha acids and 7% lower beta acids. In ‘Opal’, infection by HpLV and HpMV were the most deleterious to cone yield, however the effect of HpMV was ameliorated when in combination with PNRSV‐I. Reductions in alpha and beta acid content were attributable only to mixed infections of HpLV + HpMV in combination with either serotype of PNRSV. In ‘Pride of Ringwood’, yield loss was mostly attributable to HpMV and to a lesser extent, HpLV. Some ameliorations in cone yield loss occurred in plants containing a mixed infection between HpMV and HpLV or either of the ilarvirus serotypes. Both of the ilarviruses and HpMV caused reductions in alpha acid content. In ‘Victoria’, cone yield loss was mostly attributable to combinations of viruses such as HpLV + PNRSV‐I and HpLV + HpMV. The deleterious effect of HpLV + HpMV was ameliorated by PNRSV‐A and to a lesser extent, PNRSV‐I. Infection by the virus combinations studied did not significantly affect alpha and beta acid levels in either year. Results suggested the effect of viruses and their combinations differed between cultivars and varied between seasons. This information, when combined with knowledge of the rates of virus re‐infection, can be used to recommend control strategies for the Australian hop industry.  相似文献   

19.
Chemical force microscopy of cellulosic fibers   总被引:2,自引:0,他引:2  
Atomic force microscopy with chemically modified cantilever tips (chemical force microscopy) was used to study the pull-off forces (adhesion forces) on cellulose model surfaces and bleached softwood kraft pulp fibers in aqueous media. It was found that for the –COOH terminated tips, the adhesion forces are dependent on pH, whereas for the –CH3 and –OH terminated tips adhesion is not strongly affected by pH. Comparison between the cellulose model surfaces and cellulosic fibers under our experimental conditions reveal that surface roughness does not affect adhesion strongly. X-ray photoelectron spectroscopy (XPS) and Fourier Transformed Infrared (FTIR) spectroscopy reveal that both substrate surfaces have homogeneous chemical composition. The results show that chemical force microscopy can be used for the chemical characterization of cellulose surfaces at a nano-level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号