首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four Bovidae cell lines (BEK-1, MDBK, Bu and EBTr) were characterized by means of enzymatic biochemical markers. Out of 15 enzymatic systems, 3 — adenosine dea-minase [Ada), phosphoglucomutase (Pgm) and nucleoside phosphorylase (Np) —were found to be polymorphic and quite suitable for biochemical identification of each cell line. The Bu cell line has shown a Np phenotypic pattern which could be distinctive of the Bison bison species.  相似文献   

2.
The mechanisms, cell surface structures, and cell types involved in the phorbol 12,13-dibutyrate (P(Bu)2)-induced binding between human lymphocytes were studied. Induction of cell aggregation by 20 min treatment with P(Bu)2 required Ca2+, an intact membrane, functional microfilaments, and the possible participation of an esterase or, less likely, a protease. Trypsin-sensitive cell surface structures were needed and neuraminidase (NANase) treatment slightly increased the intercellular binding. Retinoic acid, an anti-tumor promoting agent, was inhibitory. Calmodulin-dependent processes, microtubules, phospholipid methylation, intracellular levels of cyclic adenosine monophosphate, and cellular secretion did not seem to be involved. Cell conjugation between 24 hr P(Bu)2-treated and untreated cells required participation of trypsin-sensitive cell surface structures in each of the interacting cells and NANase treatment of one partner slightly increased the intercellular binding. Thymocytes, T cells, mature B and Epstein-Barr virus-transformed B cells aggregated while pre-B, early B, and intermediate B lymphocytes derived from representative malignancies did not. The lack of aggregation was not due to the absence of phorbol ester receptors. It is concluded that the P(Bu2)-induced intercellular binding is mediated by cell surface proteins, depends on certain enzymatic activities and metabolic events and involves certain cell types.  相似文献   

3.
4.
5.
A combination of experimental, analytical, and modeling investigations shows that an anaerobic, sulfate-reducing consortium reduced Np(V) to Np(IV), with subsequent precipitation of a Np(IV) solid. Precipitation of Np(IV) during growth on pyruvate occurred before sulfate reduction began. H2 stimulated precipitation of Np(IV) when added alone to growing cells, but it slowed precipitation when added along with pyruvate. Increasing concentrations of pyruvate also retarded precipitation. Accumulation of an intermediate pyruvate-fermentation product – probably succinate – played a key role in retarding Np(IV) precipitation by complexing the Np(IV). Hydrogen appears to have two roles in controlling Np precipitation: donating electrons for Np(V) reduction and modulating intermediate levels. That Np(V) is microbially reduced and subsequently precipitated under anaerobic conditions has likely beneficial implications for the containment of Np on lands contaminated by radionuclides, but complexation by fermentation intermediates can prevent immobilization by precipitation.  相似文献   

6.
p63 belongs to a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, two types of p63 proteins are produced. The ΔNp63 isoform lacks the N‐terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation. ΔNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of ΔNp63 overexpression in NPC pathogenesis has not been clear. In this study, we use a ΔNp63 overexpressing human NPC cell line (NPC‐076) to explore the possible roles of ΔNp63 in cell proliferation and cell‐cycle regulation. We found that the proliferation of NPC‐076 cell is greatly suppressed when the overexpressed ΔNp63 is silenced by specific ΔNp63 siRNA. Further studies show that ΔNp63 silencing results in the upregulation of CKIs, including p27kip1 and p57kip2 in both mRNA and protein levels. Cell‐cycle analysis shows that ΔNp63 silencing also results in an increased G1 phase cell and apoptotic cell population. Our findings indicate that ΔNp63 plays important roles in the regulation of NPC‐076 cell‐cycle progression, and may play a role in the maintenance of NPC‐076 tumor cell phenotype. J. Cell. Physiol. 219: 117–122, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
The transfer of soluble Np(V) nitrate was measured in gastrointestinal segments from adult rats by two procedures: instillation, in segments in which the physico-chemical form of Np might be modified by gastrointestinal factors; and perfusion, in segments in which the luminal state of Np remains constant. These assays allowed accurate measurement of the Np(V) transferred from the intestine to the whole body. The amount measured was proportional to segment length and to the duration of the experiments, which lasted for periods of 0.25 to 2 h. Under these experimental conditions, hourly transfer values were about 2 percent, both per millilitre of Np(V) solution instilled and per 10 cm of jejunum perfused. This flux is very much greater than that which may be deduced from studies in which Np was gavaged into intact rats. Intestinal transfer of Np was constant for Np concentrations ranging from 5 X 10(-12) M to 1 X 10-4) M. Raising the concentration of Np(V) to more than 1 X 10(-4) M reduced its intestinal transfer. Addition of Fe(II) also reduced it. The small intestine was the main site of Np(V) absorption, since the transfer from instilled jejunum was about 20 times that observed from the stomach, and no difference was noted between jejunal and duodenal transfer.  相似文献   

8.
Heterochromatic chromosomal regions undergo large-scale reorganization and progressively aggregate, forming chromocenters. These are dynamic structures that rapidly adapt to various stimuli that influence gene expression patterns, cell cycle progression, and differentiation. Np95-ICBP90 (m- and h-UHRF1) is a histone-binding protein expressed only in proliferating cells. During pericentromeric heterochromatin (PH) replication, Np95 specifically relocalizes to chromocenters where it highly concentrates in the replication factories that correspond to less compacted DNA. Np95 recruits HDAC and DNMT1 to PH and depletion of Np95 impairs PH replication. Here we show that Np95 causes large-scale modifications of chromocenters independently from the H3:K9 and H4:K20 trimethylation pathways, from the expression levels of HP1, from DNA methylation and from the cell cycle. The PHD domain is essential to induce this effect. The PHD domain is also required in vitro to increase access of a restriction enzyme to DNA packaged into nucleosomal arrays. We propose that the PHD domain of Np95-ICBP90 contributes to the opening and/or stabilization of dense chromocenter structures to support the recruitment of modifying enzymes, like HDAC and DNMT1, required for the replication and formation of PH.  相似文献   

9.
This paper summarizes the extraction of Np(IV), Pu(IV) and Am(III) with dihexyl-N,Ndiethyl carbamyl methylene phosphonate (DHDECMP)-diethyl benzene (DEB) in nitric acid.The distribution ratio of Np(IV), Pu(IV) and Am(III) was studied as a function of a number of parameters such as concentration of nitric acid, salting-out reagent in the aqueous phase, contact time and temperature. Stripping and separation of Np(IV), Pu(IV) and Am(III) from the pregnant organic phase were also studied. The suitable stripping and separation conditions were obtained. The enthalpy changes ΔHNp, ΔHPu, ΔHAm associated with their extraction process were estimated individually. The composition of extracted complex of Np(IV), Pu(IV) and Am(III) was determined.  相似文献   

10.
This review summarizes our knowledge of analogs and derivatives of diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), the most extensively studied member of the dinucleoside 5',5"'-P1,Pn-polyphosphate (NpnN) family. After a short discussion of enzymes that may be responsible for the accumulation and degradation of Np4)N's in the cell, this review focuses on chemically and/or enzymatically produced analogs and their practical applications. Particular attention is paid to compounds that have aided the study of enzymes involved in the metabolism of Ap4A (Np4N'). Certain Ap4A analogs were alternative substrates of Ap4A-degrading enzymes and/or acted as enzyme inhibitors, some other helped to establish enzyme mechanisms, increased the sensitivity of certain enzyme assays or produced stable enzyme:ligand complexes for structural analysis.  相似文献   

11.
12.
13.
E S Kakpakova  Iu S Massino 《Genetika》1978,14(11):2025-2028
New biochemically marked Djungarian hamster cell line (DX-TK-) was established. These cells are resistant to 5-bromodeoxyuridine (25 mkg/ml) and deficient in thymidine kinase activity (TK-). Due to this biochemical defect they have lost the ability to grow in HAT medium. DX-TK- cells are malignant. They grow as tumours after the inoculation to newborn Djungarian hamsters. Tumorigenecity of DX-TK- cells was decreased as compared with the parent TK+ cell line. DX-TK- cell line is a hypodiploid cell culture (26 chromosomes) with 7 chromosome markers easily identified by means of G-band staining. This line is a new model for somatic cell genetic experiments, particularly for somatic cell hybridization.  相似文献   

14.
Platonova O  Akey IV  Head JF  Akey CW 《Biochemistry》2011,50(37):8078-8089
Human Npm2 is an ortholog of Xenopus nucleoplasmin (Np), a chaperone that binds histones. We have determined the crystal structure of a truncated Npm2-core at 1.9 ? resolution and show that the N-terminal domains of Npm2 and Np form similar pentamers. This allowed us to model an Npm2 decamer which may be formed by hydrogen bonds between quasi-conserved residues in the interface between two pentamers. Interestingly, the Npm2 pentamer lacks a prototypical A1-acidic tract in each of its subunits. This feature may be responsible for the inability of Npm2-core to bind histones. However, Npm2 with a large acidic tract in its C-terminal tail (Npm2-A2) is able to bind histones and form large complexes. Fluorescence resonance energy transfer experiments and biochemical analysis of loop mutations support the premise that nucleoplasmins form decamers when they bind H2A-H2B dimers and H3-H4 tetramers simultaneously. In the absence of histone tetramers, these chaperones bind H2A-H2B dimers with a single pentamer forming the central hub. When taken together, our data provide insights into the mechanism of histone binding by nucleoplasmins.  相似文献   

15.
A lymphoid cell line established by Epstein-Barr virus (EBV)-transformation of peripheral blood B-lymphocytes from a patient with Sandhoff disease showed a severe deficiency of beta-N-acetylhexosaminidase activity (residual activity around 10% of that in lymphoid cell lines from normals or other lipidotic patients). This residual beta-N-acetylhexosaminidase was completely heat-labile in contrast to that of normals. The molecular forms of residual beta-N-acetylhexosaminidase from Sandhoff lymphoid cell line were separated by Con A-sepharose and electrofocusing. Their properties and electrofocusing profiles were compared to those from Sandhoff fibroblasts and from fetal brain: this comparison permitted to identify the residual molecular forms with Hex S and Hex C. The microheterogeneity of Hex S and Hex C, demonstrated by electrofocusing, was discussed. 2-Acetamido-2-deoxy-D-galactonolactone (GalNAcLone) showed a strong inhibitory effect on lysosomal Hex A, B and S, but only a very slight effect on Hex C. Studies of the inhibition type (competitive on Hex A, B and S and mixed on Hex C) gave some informations about the enzymatic site. Elsewhere, differences in affinity of GalNAcLone for the various isoenzymes could be utilized to define optimal assay conditions for specifically determining Hex C (standard assay containing 400 mumol/l of GalNAcLone). These results demonstrated that EBV-transformed lymphoid cell lines represent an accurate model system for enzymatic studies of Sandhoff disease.  相似文献   

16.
A serum-free medium supplemented with a glial conditioned medium, a brain extract from 8-to 10-day-old mice, hormones, and eye-derived growth factor has been devised which permitted the mouse primitive hypothalamic nerve cell line F7 to express some biochemical properties typical of monoaminergic neurons. Maximal expression was obtained when the culture conditions were applied for 2 days. Most (90–95%) cells then synthesized [3H]serotonin from [4H]5-hydroxytryptophan (but not from [3H]tryptophan). No synthesis was detected in the presence of carbidopa (20 μM), therefore suggesting the involvement of l-aromatic-amino-acid decarboxylase in this process. In addition, F7 cells cultured in such serum-free medium exhibited the capacity of accumulating exogenous serotonin by an ouabain-sensitive mechanism. These data further supported that active molecules in the cell environment can induce, in a primitive cell line, some of the enzymatic activities associated with monoaminergic neurons. Since other well-defined culture conditions can promote the differentiation of the same clone into oligodendrocytes (De Vitry et al., 1983), it can be concluded that the F7 cell has the properties of an embryonic stem cell of the CNS which, depending on external signals, may switch into different alternative developmental neural pathways. We postulate that the stabilization of neuron-like properties due to repetitive cell stimulation by active signals in the environment may represent an example of learning at the cellular level.  相似文献   

17.
Tris(triazolyl)borate (Ttz) ligands are sterically similar to tris(pyrazolyl)borate (Tp) but complexes of Ttz show improved solubility in water and alcohols due to their propensity for forming hydrogen bonds. Recently developed bulky tris(triazolyl)borate ligands can produce four and five coordinate transition metal complexes and serve as models for enzyme active sites in an aqueous environment. Herein we report the synthesis of such complexes, i.e. (TtztBu,Me)ZnCl, (TtztBu,Me)ZnBr, (TtztBu,Me)NiCl, and (TtztBu,Me)CuCl, which were analyzed by X-ray crystallographic and spectroscopic methods [TtztBu,Me = tris(3-t-butyl-5-methyl-1,2,4-triazolyl)borate]. (TtztBu,Me)ZnCl crystallizes as two different polymorphs with cubic and monoclinic symmetry. Both polymorphs of (TtztBu,Me)ZnCl and (TtztBu,Me)ZnBr have tetrahedral zinc atoms whereas the geometries at the metal in (TtztBu,Me)NiCl and (TtztBu,Me)CuCl are distorted tetrahedral. All complexes are methanol soluble and they also dissolve in methanol/water mixtures with up to 60% water.  相似文献   

18.
Microbial metabolism plays a pivotal role in controlling the solubility and mobility of radionuclides in waters contaminated by nuclear waste. The distribution and activity of dissimilatory Fe(III)-reducing bacteria are of particular importance because they can alter the solubility of radionuclides via direct enzymatic reduction or by indirect mechanisms catalyzed via a range of electron shuttling compounds. Using a combination of the techniques of microbiology, biochemistry, and molecular biology, we have characterized the mechanisms of electron transfer to key radionuclides by Fe(III)-reducing bacteria. The mechanisms of enzyme-mediated reduction of problematic actinides, principally U(VI) but including Pu(IV) and Np(V), are described in this review. In addition, the mechanisms by which the fission product Tc(VII) is reduced are also discussed. Direct enzymatic reductions of Tc(VII), catalyzed by microbial hydrogenases, are described along with indirect mechanisms catalyzed by microbially produced Fe(II). Finally, we describe new results that demonstrate the transfer of electrons from biogenic U(IV) to Tc(VII), leading to coprecipitation of Tc(IV) and U(IV), and opening the way for treatment of liquid wastes cocontaminated with both uranium and technetium in one step.  相似文献   

19.
Medgyesy et al. (1986, Mol. Gen. Genet. 204, 195–198) have described in Nicotiana plumbaginifolia and in an interspecific cross involving N. plumbaginifolia and N. tabacum a procedure for selecting cell lines derived from seedlings carrying paternal chloroplasts by taking advantage of a plastid-encoded mutation which confers resistance to streptomycin. We have extended their demonstration of occasional transmission of chloroplasts through pollen to the case of an intraspecific cross in N. tabacum. The line used as maternal parent, ITB19(sua), displayed a cytoplasmic male sterility due to the presence of a cytoplasm originating from N. suaveolens. The line used as paternal parent, SR1, was fertile and possessed mutant chloroplasts conferring resistance to streptomycin. From cell lines derived from 204 seedlings, three were regenerated into streptomycin-resistant buds. The plants derived from these three clones were male-sterile. Their progeny, after crossing with a wild type tobacco line, XHFD8, was resistant to streptomycin. Tests of resistance of the seedlings to tentoxin and restriction analyses of the chloroplast DNA indicated that two clones still had the maternal chloroplasts and were thus probably new streptomycin-resistant mutants, whereas the third one had acquired the chloroplasts of the paternal parent, but had retained the mitochondria of the maternal parent.Abbreviations cp-DNA chloroplast DNA - mt-DNA mitochondrial DNA - Np Nicotiana plumbaginifolia - Nt Nicotiana tabacum  相似文献   

20.
4-Hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may be required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC(50) value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC(50) values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10-20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60min. However, HNE induced >80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct formation and HNE cytotoxicity, facilitated by GSH depletion mediated by both MRP1 and GSTM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号