首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at?the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of?GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.  相似文献   

2.
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.  相似文献   

3.
A full-length cDNA encoding a novel type of plant dynamin-like protein, ADL3, was isolated from Arabidopsis thaliana. ADL3 is a high molecular weight GTPase whose GTP-binding domain shows a low homology to those of other plant dynamin-like proteins. ADL3 contains the pleckstrin homology domain as is in mammalian dynamins, although other plant dynamin-like proteins reported lack this domain. The ADL3 gene was expressed weakly in various tissues, except for siliques with high level expression, which is distinct from the case for other plant dynamin-like protein genes. Taken together, it is predicted that the mode of activation of ADL3 is different from those of other plant homologues.  相似文献   

4.
Computational modeling continues to play an important role in novel therapeutics discovery and development. In this study, we have investigated the use of in silico approaches to develop inhibitors of the pleckstrin homology (PH) domain of AKT (protein kinase B). Various docking/scoring schemes have been evaluated, and the best combination was selected to study the system. Using this strategy, two hits were identified and their binding behaviors were investigated. Robust and predictive QSAR models were built using the k nearest neighbor (kNN) method to study their cellular permeability. Based on our in silico results, long flexible aliphatic tails were proposed to improve the Caco-2 penetration without affecting the binding mode. The modifications enhanced the AKT inhibitory activity of the compounds in cell-based assays, and increased their activity as in vivo antitumor testing.  相似文献   

5.
Despite the importance of signal transduction pathways at membrane surfaces, there have been few means of investigating their molecular mechanisms based on the structural information of membrane-bound proteins. We applied solid state NMR as a novel method to obtain structural information about the phospholipase C-delta1 (PLC-delta1) pleckstrin homology (PH) domain at the lipid bilayer surface. NMR spectra of the alanine residues in the vicinity of the beta5/beta6 loop in the PH domain revealed changes in local conformations due to the membrane localization of the protein. We propose that these conformational changes originate from a hydrophobic interaction between the amphipathic alpha-helix located in the beta5/beta6 loop and the hydrophobic layer of the membrane and contribute to the membrane binding affinity, interdomain interactions and intermolecular interactions of PLC-delta1.  相似文献   

6.
The amino terminus of phospholipase D1 (PLD1) contains three potential membrane-interacting determinants: a phox homology (PX) domain, a pleckstrin homology (PH) domain and two adjacent cysteines at positions 240 and 241 within the PH domain that are fatty acylated in vivo. To understand how these determinants contribute to membrane localization, we have mutagenized critical residues of the PLD1 PH domain in the wild type or palmitate-free background in the intact protein, in a fragment that deletes the first 210 amino acids including the PX domain, and in the isolated PH domain. Mutants were expressed in COS-7 cells and examined for membrane residence, intracellular localization, palmitoylation, and catalytic activity. Our results are as follows. 1) Mutagenesis of critical residues of the PH domain results in redistribution of PLD1 from membranes to cytosol, independently of fatty acylation sites. Importantly, PH domain mutants in the wild type background showed greatly reduced fatty acylation, despite the presence of all relevant cysteines. 2) The isolated PH domain did not co-localize with PLD1 and was not palmitoylated. 3) The PX deletion mutant showed similar distribution and palmitoylation to the intact protein. Interestingly, PH domain mutants in this background showed significant palmitoylation and incomplete cytosolic redistribution. 4) PH domain mutants in the wild type or palmitate-free background maintained catalytic activity. We propose that membrane targeting of PLD1 involves a hierarchy of signals with a functional PH domain allowing fatty acylation leading to strong membrane binding. The PX domain may modulate function of the PH domain.  相似文献   

7.
Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP(2) in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.  相似文献   

8.
Insulin receptor substrate-1 (IRS-1) protein is a major substrate of the insulin receptor tyrosine kinase and is essential for transducing many of the biological effects of insulin including mitogenesis, gene expression, and glucose transport. The N terminus of IRS-1 contains a pleckstrin homology (PH) domain that is critical for recognition and subsequent phosphorylation of IRS-1 by the activated insulin receptor. Here we report the isolation of a novel protein, PHIP (PH-interacting protein), which selectively binds to the PH domain of IRS-1 in vitro and stably associates with IRS-1 in vivo. Importantly, mutants of the IRS-1 PH domain that disrupt the PH fold fail to bind to PHIP. Anti-phosphotyrosine immunoblots of PHIP revealed no discernible insulin receptor-regulated phosphorylation, suggesting that PHIP is not itself a substrate of the insulin receptor. In contrast to full-length PHIP, overexpression of the PH-binding region of PHIP has a pronounced inhibitory effect on insulin-induced IRS-1 tyrosine phosphorylation levels. Furthermore, expression of this dominant-negative PHIP mutant leads to a marked attenuation of insulin-stimulated mitogen-activated protein kinase activity. We conclude that PHIP represents a novel protein ligand of the IRS-1 PH domain that may serve to link IRS-1 to the insulin receptor.  相似文献   

9.
Recent observations have been made regarding the generation of inositol 1,4,5-trisphosphate (IP(3)), using chimeras of green fluorescent protein and the pleckstrin homology domain of phospholipase C-delta. In this paper a model is presented giving the quantitative relations between the green fluorescent protein-pleckstrin homology domain (GFP-PHD) construct and membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels as well as the concentration of IP(3), the product of hydrolysis of PIP(2). The model can correctly reproduce the dependence of cytosolic GFP-PHD fluorescence on IP(3) concentration. This model extends a previous one (Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation, in this issue) dealing with the processes governing the production of IP(3) and the subsequent calcium (Ca2+) changes in cells following activation of metabotropic receptors. This model is applied to the case of purinergic P(2)Y(2) receptor activation in Madin-Darby Canine Kidney (MDCK) cells with adenosine triphosphate (ATP) (Science 284 (1999) 1527). It is shown that it can correctly reproduce the dependence of GFP-PHD fluorescence on the concentration of P(2)Y(2) receptor ligand, as well as the temporal changes of GFP-PHD fluorescence following application of ligand.  相似文献   

10.
Current studies involve an investigation of the role of the pleckstrin homology (PH) domain in membrane targeting and activation of phospholipase Cbeta(1) (PLCbeta(1)). Here we report studies on the membrane localization of the isolated PH domain from the amino terminus of PLCbeta(1) (PLCbeta(1)-PH) using fluorescence microscopy of a green fluorescent protein fusion protein. Whereas PLCbeta(1)-PH does not localize to the plasma membrane in serum-starved cells, it undergoes a rapid but transient migration to the plasma membrane upon stimulation of cells with serum or lysophosphatidic acid (LPA). Regulation of the plasma membrane localization of PLCbeta(1)-PH by phosphoinositides was also investigated. PLCbeta(1)-PH was found to bind phosphatidylinositol 3-phosphate most strongly, whereas other phosphoinositides were bound with lower affinity. The plasma membrane localization of PLCbeta(1)-PH induced by serum and LPA was blocked by wortmannin pretreatment and by LY294002. In parallel, activation of PLCbeta by LPA was inhibited by wortmannin, by LY294002, or by the overexpression of PLCbeta(1)-PH. Microinjection of betagamma subunits of G proteins in serum-starved cells induced the translocation of PLCbeta(1)-PH to the plasma membrane. These results demonstrate that a cooperative mechanism involving phosphatidylinositol 3-phosphate and the Gbetagamma subunit regulates the plasma membrane localization and activation of PLCbeta(1)-PH.  相似文献   

11.
Protein kinase D (PKD) is a member of the AGC family of Ser/Thr kinases and is distantly related to protein kinase C (PKC). Formerly known as PKCmu, PKD contains protein domains not found in conventional PKC isoforms. A functional pleckstrin homology (PH) domain is critical for the regulation of PKD activity. Here we report that PKD is tyrosine-phosphorylated within the PH domain, leading to activation. This phosphorylation is mediated by a pathway that consists of the Src and Abl tyrosine kinases and occurs in response to stimulation with pervanadate and oxidative stress. Mutational analysis revealed three tyrosine phosphorylation sites (Tyr(432), Tyr(463), and Tyr(502)), which are regulated by the Src-Abl pathway, and phosphorylation of only one of these (Tyr(463)) leads to PKD activation. By using a phospho-specific antibody, we show that Abl directly phosphorylates PKD at Tyr(463) in vitro, and in cells phosphorylation of this site is sufficient to mediate full activation of PKD. Mutation of the other two sites, Tyr(432) and Tyr(502), had no significant influence on PKD activity. These data reveal a tyrosine phosphorylation-dependent activation mechanism for PKD and suggest that this event contributes to the release of the autoinhibitory PKD PH domain leading to kinase activation and downstream responses.  相似文献   

12.
Pleckstrin homology (PH) domains are a family of compact protein modules defined by sequences of roughly 100 amino acids. These domains are common in vertebrate, Drosophila, C. elegans and yeast proteins, suggesting an early origin and fundamental importance to eukaryotic biology. Many enzymes which have important regulatory functions contain PH domains, and mutant forms of several such proteins are implicated in oncogenesis and developmental disorders. Numerous recent studies show that PH domains bind various proteins and inositolphosphates. Here I discuss PH domains in detail and conclude that they form a versatile family of membrane binding and protein localization modules.  相似文献   

13.
Maffucci T  Falasca M 《FEBS letters》2001,506(3):173-179
Pleckstrin homology (PH) domains are protein modules found in proteins involved in many cellular processes. The majority of PH domain-containing proteins require membrane association for their function. It has been shown that most PH domains interact directly with the cell membrane by binding to phosphoinositides with a broad range of specificity and affinity. While a highly specific binding of the PH domain to a phosphoinositide can be necessary and sufficient for the correct recruitment of the host protein to the membrane, a weaker and less specific interaction may be necessary but not sufficient, thus probably requiring alternative, co-operative mechanisms.  相似文献   

14.
15.
16.
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.  相似文献   

17.
A bifunctional molecule containing biotin and d-myo-inositol 1,3,4,5-tetrakisphosphate was synthesized. This molecule was designed on the basis of X-ray structure of the complex of d-myo-inositol 1,3,4,5-tetrakisphosphates, Ins(1,3,4,5)P(4), and Grp1 PH (general receptor of phosphoinositides pleckstrin homology) domain for the application to the widely employed biotin-avidin techniques. The building block of inositol moiety was synthesized starting with myo-inositol and assembled with the biotin-linker moiety through a phosphate linkage. The equilibrium dissociation constant K(D) of biotinylated Ins(1,3,4,5)P(4) binding of original Grp1 PH domain was 0.14 μM in pull-down analysis, which was comparable to that of unmodified Ins(1,3,4,5)P(4). Furthermore, biotinylated Ins(1,3,4,5)P(4) had an ability to distinguish Grp1 PH domain from PLCδ(1) PH domain. Thus, biotinylated Ins(1,3,4,5)P(4) retained the binding affinity and selectivity of original Grp1 PH domain, and realized the intracellular Ins(1,3,4,5)P(4) despite a tethering at the 1-phosphate group of inositol.  相似文献   

18.
The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).  相似文献   

19.
Kindlins are a subclass of FERM-containing proteins that have recently emerged as key regulators of integrin receptor activation and signaling. As compared with the conventional FERM domain, the kindlin FERM domain contains an inserted pleckstrin homology (PH) domain that recognizes membrane phosphoinositides, including phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). Using NMR spectroscopy, we show that PIP3 site-specifically binds to kindlin-2 PH with substantial chemical shift changes that are much larger than PIP2. This suggests an enhanced association of kindlin-2 with membrane as mediated by PIP3 upon its conversion from PIP2 by phosphoinositide-3 kinase, a known regulator of integrin activation. We determined the NMR structure of the kindlin-2 PH domain bound to the head group of PIP3, inositol 1,3,4,5-tetraphosphate (IP4). The structure reveals a canonical PH domain fold, yet with a distinct IP4 binding pocket that appears highly conserved for the kindlin family members. Functional experiments demonstrate that although wild type kindlin-2 is capable of cooperating with integrin activator talin to induce synergistic integrin α(IIb)β(3) activation, this ability is significantly impaired for a phosphoinositide binding-defective kindlin-2 mutant. These results define a specific PIP3 recognition mode for the kindlin PH domain. Moreover, they shed light upon a mechanism as to how the PH domain mediates membrane engagement of kindlin-2 to promote its binding to integrin and cooperation with talin for regulation of integrin activation.  相似文献   

20.
Oak SA  Jarrett HW 《Biochemistry》2000,39(30):8870-8877
Syntrophins are known to self-associate to form oligomers. Mouse alpha 1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and were found to also oligomerize and in a micromolar Ca(2+)-dependent manner. The oligomerization was localized to the N-terminal pleckstrin homology domain (PH1) or adjacent sequences; the second, C-terminal PH2 domain did not show oligomerization. PH1 was found to self-associate, and calmodulin or Ca(2+)-chelating agents such as ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) could effectively prevent this oligomerization. A single calmodulin bound per syntrophin to cause inhibition of the precipitation. Since calmodulin inhibited syntrophin oligomerization in the presence or absence of Ca(2+), Ca(2+) binding to syntrophin is responsible for the inhibition by EGTA of syntrophin oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号