首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Juvenile hormone regulates the development and reproduction in a variety of insects. Juvenile hormone esterase (JHE) is a selective enzyme, which hydrolyzes the methyl ester of JH and alters its activity. In Tenebrio molitor, JHE has been previously purified from pupae and a partial cDNA was amplified by RT-PCR using fat body mRNA. The previous report indicated that several forms of the JHE protein were present in pupal homogenate. In this study, we report the full-length cDNA, which was obtained by RACE methods. The deduced protein sequence corresponds to peptides from two proteins of different molecular weights in the previous study. The coding region of the full-length cDNA was subcloned into the AcMNPV genome and high levels of expression of the JHE enzyme from the viral p10 promoter were demonstrated in cell culture. The majority of JHE is secreted from the cells as a soluble enzyme. The recombinant JHE enzyme was biochemically characterized. The recombinant protein appears by PAGE analysis as a monomer of approximately the same MW (66000) and pI (4.9) as was expected from the deduced amino acid sequence of the cDNA.  相似文献   

5.
6.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

7.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

8.
Juvenile hormone esterase (JHE) is a highly specific enzyme important for regulating the onset of metamorphosis in lepidopteran insects. After affinity chromatography of the hemolymph proteins of Manduca sexta, the pure JHE protein was digested with Lys-C and the resultant peptides were purified by microbore HPLC. Two peptides were selected for sequencing. Based upon these amino acid sequences, degenerate RT-PCR was performed in order to amplify a partial cDNA sequence from mRNA from the fat body of M. sexta. A 1512bp partial cDNA was generated and found to be highly homologous to the JHE from Heliothis virescens. 5' and 3' RACE were performed to obtain the full length cDNA sequence. The cDNA has a total length of 2220bp, with a 1749bp coding region. The deduced protein sequence contains 573 amino acids.  相似文献   

9.
【目的】保幼激素(juvenile hormone, JH)在小麦吸浆虫Sitodiplosis mosellana滞育诱导及滞育后静息状态的维持中发挥着重要作用。保幼激素酯酶(hormone esterase, JHE)和保幼激素环氧水解酶(juvenile hormone epoxide hydrolase, JHEH)是调控JH滴度的重要降解酶。本研究旨在探讨JHE和JHEH在小麦吸浆虫滞育和变态发育中潜在功能。【方法】通过RT-PCR和RACE技术从小麦吸浆虫滞育前幼虫克隆JHE和JHEH全长cDNA序列;利用生物信息学软件分析其核苷酸及编码蛋白特性;采用qPCR技术分析其在小麦吸浆虫滞育不同时期(滞育前、滞育期、滞育后静息期和滞育后发育)3龄幼虫及1龄幼虫到成虫不同发育阶段(1-2龄幼虫、预蛹、初蛹、中蛹、后蛹、雌成虫和雄成虫)中的表达水平。【结果】克隆获得了cDNA全长分别为3 102和1 980 bp的小麦吸浆虫SmJHE和SmJHEH基因(GenBank登录号分别为MG876768和MG876769),其开放阅读框分别长1 740和1 371 bp,分别编码579和456个氨基酸,预测蛋白分子量分别为65.67和51.65 kD。SmJHE蛋白含有5个JHE家族特有的保守模块,SmJHEH含有催化三联体Asp228, Asp404和His431及组成阴氧离子洞的两个Tyr(Tyr299和Tyr374)和HGWP花样结构。序列比对和进化分析表明,SmJHE和SmJHEH均与双翅目(Diptera)长角亚目(Nematocera)昆虫同源蛋白氨基酸序列一致性较高,亲缘关系最近。不同滞育时期的表达模式表明,SmJHE和SmJHEH在滞育前期(1龄到滞育前的3龄幼虫早期)表达量变化不明显,进入滞育后表达量基本维持恒定,但均在滞育后静息阶段的当年12月至翌年1月最低。发育表达模式表明,幼虫恢复发育后SmJHE表达量逐渐升高,预蛹期达到最高,在雌成虫中的表达量显著低于雄成虫中的;SmJHEH表达量则在预蛹期最低,在雌成虫中最高。【结论】SmJHE和SmJHEH参与小麦吸浆虫滞育调控,其表达量的降低与滞育后静息阶段JH的累积有关;SmJHE在发育过程中表达量的升高可能参与幼虫到蛹的变态,表达量的降低可能与生殖发育有关。  相似文献   

10.
11.
Juvenile hormone esterase (JHE) plays an essential role in insect development. It is partially responsible for the clearance of juvenile hormone (JH) which regulates various aspects of insect development and reproduction. Because of its role in regulating JH titer, this enzyme has been targeted for development of biologically-based insecticides. JHE was partially purified from the beetle, Tenebrio molitor, using a transition state analog as the affinity ligand. Two forms of JHE were characterized by activity analysis, isoelectric focusing, two-dimensional SDS-PAGE and N-terminal sequence analysis. The esterase is associated with two proteins of sizes 71 and 150 kDa, both of which are active on JH III. A partial cDNA clone for the enzyme was isolated based on the sequence of N-terminal and internal peptides. Its sequence indicates that JHE from T. molitor and Heliothis virescens may have a common origin.  相似文献   

12.
Juvenile hormone esterase (JHE), a selective enzyme that hydrolyzes the methyl ester of insect juvenile hormone plays an important role in regulating metamorphosis in nymphs as well as reproduction in adults. Studies on JH degradation provide insight into the possibilities of physiological disruption in the insects. In the present study, the JH degrading enzyme, JHE from the cotton pest Dysdercus cingulatus (Heteroptera) is characterized. Electrophoretic analysis of haemolymph during various developmental stages showed the JHE bands prominent only on the final day of 5th instar nymph, and the esterase substrate specificity confirmed the presence of JHE isoforms. In an attempt to clone cDNA of JHE gene from the final instar nymphs, mRNA isolated from fat bodies was coupled with JHE gene-specific primers and the cDNA was synthesized using RT-PCR. The PCR amplified cDNA showed the presence of JHE isoforms in D. cingulatus.  相似文献   

13.
The 458 amino acid sequence of a mature JHE protein from the cricket Gryllus assimilis was identified after isolating the partial cDNA sequence encoding this protein from a fat body and midgut cDNA library. This hemimetabolan JHE sequence shows over 40% amino acid similarity to the known JHE sequences of several holometabolous insects. It also includes previously determined peptide sequences for G. assimilis JHE as well as two other motifs associated with JHE enzymes in holometabolous insects. The predicted molecular weight of the protein agrees with that of the JHE previously purified from G. assimilis. Partial genomic sequence encoding the Jhe contains two large (1330 and 2918 bp) introns. No coding DNA sequence variation was observed over a 1293 bp region between selected lines differing six to eight-fold in hemolymph JHE activity. However, a 19 bp indel was found in one of the introns; the insertion was strongly associated with elevated hemolymph activity, both in the selected lines and in the F2 progeny of crosses between them. Phylogenetic analyses localised the G. assimilis JHE to a clade containing dipteran and coleopteran JHEs, with lepidopteran JHEs occurring in a separate clade.  相似文献   

14.
The tissue distribution, developmental control, and induction of juvenile hormone esterase (JHE) mRNA was examined in Heliothis virescens using an 800-base pair fragment of a JHE cDNA clone. Northern hybridization analysis of poly(A)+RNA from fat body and integument of fifth stadium larvae indicated the presence of a single JHE mRNA species having an estimated length of 3 kilobases. On Day 2 of the fifth stadium (L5D2), basal JHE mRNA levels were 3-fold higher in the integument than the fat body, which correlated with the higher specific activity of the enzyme in the integument at this time. However, JHE mRNA levels in the fat body on Day 4 of the fifth stadium were 9-fold higher than on Day 2, while mRNA levels in the integument remained the same. This endogenous increase in JHE mRNA and activity in the fat body occurred at the time of peak hemolymph JHE activity. JHE mRNA was not detected in third stadium larvae which have very low levels of JHE activity. Treatment of L5D2 larvae with the juvenile hormone mimic epofenonane resulted in a 7- and 14-fold increase in the level of JHE mRNA in the integument and fat body, respectively. The mRNA induced in both tissues was of the same estimated length as the constitutively expressed message. The data indicate that the developmental regulation and induction of JHE can occur at the level of mRNA. There is evidence that the fat body secretes more JHE than does the integument and could be the major source of hemolymph JHE.  相似文献   

15.
Juvenile hormone esterase (JHE) is the primary juvenile hormone (JH) metabolic enzyme in insects and plays important roles in the regulation of molt and metamorphosis. We investigated its mRNA expression profiles and hormonal control in Bombyx mori larvae. JHE mRNA was expressed at the end of the 4th and 5th (last) larval instars in the midgut and in all the three (anterior, middle, posterior) parts of the silk gland. In the fat body, JHE expression peaked twice in the 5th instar, at wandering and before pupation, while it gradually decreased through the 4th instar. When 20-hydroxyecdysone (20E) was injected into mid-5th instar larvae, JHE mRNA expression was induced in the anterior silk gland but suppressed in the fat body. Topical application of a juvenile hormone analog fenoxycarb to early-5th instar larvae induced JHE expression in both tissues. In the anterior silk gland, JHE expression was accelerated and strengthened by 20E plus fenoxycarb treatments compared with 20E or fenoxycarb single treatment, indicating positive interaction of 20E and JH. JHE mRNA is thus expressed in tissue-specific manners under the control of ecdysteroids and JH.  相似文献   

16.
A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.  相似文献   

17.
Kinetic analysis was performed on the juvenile hormone (JH) esterase activity in the hemolymph of feeding, last instar larvae of Trichoplusia ni (Lepidoptera: Noctuidae). When the results were analyzed by several different graphical and regression procedures, all approaches yielded the same conclusion that at least two forms of JH esterase active sites exist in the hemolymph. The apparent Km for one site for JH I, II and III was 8.5 X 10(-8) M, and 6.6 X 10(-8) M, respectively. The Km for the other site for JH I, II and III was 6.6 X 10(-7) M, 7.6 X 10(-7) M, 40 X 10(-7) M, respectively. When hemolymph JHE activity was subjected to high resolution isoelectric focusing (IEF), two distinct large peaks of JHE activity were observed, with pIs of 5.3 and 5.5, as well as a small peak at pI 5.1. Separate kinetic analysis of the JHE activity in each peak showed that only the higher Km active site for each substrate was present (in the 10(-7) M range). These data necessitate a change in the current model for JHE in T. ni, and some other insects, which states that a single active site is responsible for most or all of the JH esterase activity in vivo. The data also explain the different estimates of the Km of JHE in T. ni obtained by different laboratories. Studies on the purification of, and the development of inhibitors for, JHE esterase must consider the role of both JHE forms and sites in regulation of T. ni metamorphosis.  相似文献   

18.
19.
Juvenile hormone esterase (JHE) is a catabolic enzyme that specifically degrades juvenile hormone (JH) and has been identified in hemolymph and tissues in both larvae and adults of numerous insect species. This study investigates the presence of JHE in ovaries of the viviparous cockroach, Diploptera punctata, and the in vitro release of JHE from these ovaries during the first gonadotrophic cycle. JHE is released in vitro from maturing basal (most posterior) follicles and from follicle cells isolated from oocytes during the short period of time between spermatophore release and chorion formation. Enzyme release is dependent upon the presence of calcium in the medium. This released ovarian JHE appears to be larger than and to display ionic characteristics that are different from the isolated hemolymph and fat body JHEs. In addition, JHE activity measured in homogenates of whole ovaries and subsequently oviposited basal oocytes increases dramatically following spermatophore release, coincident with a previously described decline in JH titer in the ovary. A likely role for ovarian JHE is the site-specific degradation of JH in and around the oocyte prior to fertilization and embryonic development.  相似文献   

20.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号