首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the determination of 2- and 4-hydroxylated estrone and estradiol in pregnancy urine by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) is described. The urine catechol estrogens were deconjugated, purified by adsorption on alumina, and subjected to HPLC-ECD. Two pairs of isomeric catechol estrogens were distinctly separated on a μBondapak C16 column with acetonitrile-0.5% ammonium dihydrogen phosphate (pH 3.0). The amounts of these four compounds were satisfactorily determined with a quantitation limit of 1 ng using 4-hydroxy-16-oxoestradiol 17-acetate as an internal standard. The validity of the present method for the determination of urine catechol estrogens was verified by the recovery test.  相似文献   

2.
A high-sensitivity analytical method that uses stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) for the simultaneous measurement of trace amounts of phenolic xenoestrogens (PXs), such as 2,4-dichlorophenol (DCP), 4-tert-butylphenol (BP), 4-tert-octylphenol (OP), 4-nonylphenol technical isomers (NP), pentachlorophenol (PCP) and bisphenol A (BPA), in human urine samples was developed. The urine sample (1 ml) was de-conjugated by adding beta-glucuronidase and sulfatase. Then, protein precipitation was performed by the addition of acetonitrile. After centrifugation, the supernatant was diluted with purified water and subjected to SBSE with in situ derivatization and TD-GC-MS. The detection limits of DCP, BP, OP, NP, PCP and BPA in the urine samples were 20, 10, 10, 50, 20 and 20 pg ml-1 (ppt), respectively. The calibration curves for PXs were linear and had correlation coefficients higher than 0.99. The average recoveries of those analytes in the urine samples were higher than 95% (RSD: <10%, n=6) with correction using the added surrogate standards. This simple, accurate, sensitive and selective method can be used in the determination of PXs in human urine samples.  相似文献   

3.
An approach using microwave-assisted derivatization (MAD) following solid-phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed to determine amphetamines in urine samples. The parameters affecting the derivatization efficiency - including microwave power and irradiation time - were investigated. Besides, solvent is thought critically important to MAD. Derivatization performance was studied using various solvents and compared with the performance obtained without solvent. Derivatization efficiency was clearly found to be enhanced by the presence of solvent. The highest derivatization efficiencies were obtained in ethyl acetate (EA) under microwave power of 250W for 1min. Calibration curves for all amphetamines were linear over a range from 1 to 1000ng/mL, with correlation coefficients above 0.9992. The intra-day and inter-day precision were less than 15%. The applicability of the method was tested by analyzing amphetamine-abusing subjects urine samples. Accordingly, the solvent-enhanced MAD-GC-MS method appears to be adequate for determining amphetamines in urine.  相似文献   

4.
The development of a sensitive and solvent-free method for the measurement of estrone (E(1)) and 17beta-estradiol (17beta-E(2)) in human urine samples is described. The deconjugated estrogens were derivatized in situ with acetic acid anhydride and the derivatives were extracted directly from the aqueous samples using stir bar sorptive extraction (SBSE). The compounds containing a secondary alcohol function are further derivatized by headspace acylation prior to thermal desorption and gas chromatography/mass spectrometry (GC/MS). A number of experimental parameters, including salt addition, temperature and time, were optimized to increase the recovery of E(1) and 17beta-E(2) by SBSE. The derivatization reactions were also optimized to obtain the highest yields of the acylated estrogens. Detection limits of 0.02 and 0.03 ng mL(-1) were obtained for E(1) and 17beta-E(2), respectively. The method was applied to determine the effect of conjugated equine estrogen intake on the excretion of E(1) and 17beta-E(2) in human urine samples. Increased levels of the endogenous estrogens were detected after administering a standard dose of Premarin to a female volunteer. Routine monitoring of estrogen levels is recommended to avoid a high urinary excretion of E(1) and 17beta-E(2), nowadays enlisted as endocrine disrupting chemicals (EDCs), during hormone replacement therapy.  相似文献   

5.
A method for the multicomponent analysis of estrogens in urine after initial hydrolysis of the conjugates is described. Following protection of the carbonyl functions by ethoximation, estrogen conjugates were extracted on Sep-Pak C18 cartridges and purified on the acetate form of DEAE-Sephadex. The samples were subsequently hydrolysed by Helix pomatia juice and the hydrolysate was purified on the acetate form of QAE-Sephadex. Estrogens with vicinal cis-hydroxyls and diphenolic compounds were fractionated on the borate and bicarbonate form of QAE-Sephadex, respectively. Neutral steroids were removed by the free base form of DEAE-Sephadex after which estrogens were separated into two groups using Lipidex 5000 in a straight phase system. Following trimethylsilyl ether derivatization estrogens were analysed by selected ion monitoring (SIM). The method allows the quantitation of all the important estrogen metabolites including catechol estrogens. It is precise, accurate and sensitive permitting the quantitation of estrogens in urine of males and non-pregnant females.  相似文献   

6.
A new method, based on stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) is described for the determination of trace amounts of bisphenol A (BPA) in river water, urine, plasma, and saliva samples. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as sample volumes and extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of BPA in river water, urine, plasma, and saliva samples are 1-5, 20, 100, and 20pgml(-1) (ppt), respectively. Calibration for BPA was shown to be linear with a correlation coefficient of >0.99. The average recoveries of BPA in all samples are higher than 95% (R.S.D. < 10%) with correction using an added surrogate standard, 13C12-bisphenol A. This simple, accurate, sensitive, and selective analytical method may be applicable to the determination of trace amounts of BPA in liquid samples.  相似文献   

7.
A simple, rapid and sensitive method termed dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC/MS) was developed for the determination of tricyclic antidepressants (TCAs) in human urine sample. An appropriate mixture of methanol (disperser solvent), carbon tetrachloride (extraction solvent), and acetic anhydride (derivatization reagent) was injected rapidly into human urine sample. After extraction, the sedimented phase was analyzed by GC/MS. The calibration curves obtained with human urine were linear with a correlation coefficient of over 0.99 in the range of 2.0/5.0-100 ng mL(-1). Under the optimum conditions (carbon tetrachloride: 10 μL, methanol: 150 μL), the detection limits and the quantification limits of the tricyclic antidepressants were 0.5-2.0 ng mL(-1) and 2.0-5.0 ng mL(-1), respectively. The average recoveries of TCAs were 88.2-104.3%. Moreover, the inter- and intra-day precision and accuracy was acceptable at all concentrations. The results showed that DLLME is applicable to the determination of trace amounts of TCAs in human urine sample.  相似文献   

8.
A new method that involves miniaturized hollow fiber assisted liquid-phase microextraction (HF-LPME) with in situ derivatization and gas chromatography-mass spectrometry (GC-MS) is described for the determination of trace amounts of bisphenol A (BPA) in human urine samples. The detection limit and the quantification limit of BPA in human urine sample are 0.02 and 0.1 ng ml(-1) (ppb), respectively. The calibration curve for BPA is linear with a correlation coefficient of >0.999 in the range of 0.1-50 ng ml(-1). The average recoveries of BPA in human urine samples spiked with 1 and 5 ng ml(-1) BPA are 101.0 (R.S.D.: 6.7%) and 98.8 (R.S.D.: 1.8%), respectively, with correction using the added surrogate standard, bisphenol A-(13)C12. This simple, accurate, sensitive and selective analytical method can be applicable to the determination of trace amounts of BPA in human urine samples.  相似文献   

9.
Urinary benzene is used as biomarker of exposure to evaluate the uptake of this solvent both in non-occupationally exposed population and in benzene-exposed workers. The quantitative determination of benzene in urine is carried out in a three steps procedure: urine collection, sample analysis by head space/solid phase microextraction/gas chromatography/mass spectrometry and analyte quantification. The adopted quantification method influences the initial step, hence the whole procedure. Two quantification approaches were compared as regards precision and accuracy: the calibration curves and the standard addition method. Even if calibration curves obtained by using urine samples from different subjects were always linear, their slopes and intercepts showed noteworthy variations, attributable to the influence of the biological matrix on benzene recovery. The standard addition method showed to be more suitable for compensating matrix effects, and a three-point standard addition protocol was used to quantify benzene in urine samples of 11 benzene-exposed workers (smokers and non-smokers). Urine from occupationally exposed workers was collected before and after work-shift. Besides urinary benzene, the applicability of the method was verified by measuring the urinary concentration of the S-phenylmercapturic acid, a specific benzene metabolite, generally adopted as biomarker in biological monitoring procedures. A similar trend of concentration levels of both analytes measured in urine samples collected before work-shift with respect to the after work-shift ones was found, showing the actual applicability of the standard addition method for biological monitoring purposes.  相似文献   

10.
A highly sensitive assay has been developed for measuring the rate of formation of 2-hydroxyestradiol and 4-hydroxyestradiol from estradiol by microsomal preparations. Catechol estrogens were converted to heptafluorobutyryl esters, which were separated by capillary column gas chromatography and quantified using electron-capture detection. 2-Hydroxyestradiol 17-acetate was used as an internal standard. The identity of catechol estrogen derivatives was verified by gas chromatography—mass spectrometry using negative-ion chemical ionization. Estrogens were identified by negative molecular ions and/or by characteristic fragments. This procedure permits quantification of catechol estrogens at the subpicogram level. The assay was validated by comparing estrogen 2- and 4-hydroxylase activities in microsomes from hamster and rat liver with values reported previously.  相似文献   

11.
Alkylphenols, 4-nonylphenol (NP) and 4-tert-octylphenol (OP), in human urine and plasma samples were analyzed using stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The method involved correction by stable isotopically labeled surrogate standards, 4-(1-methyl)octylphenol-d5 (m-OP-d5) and deuterium 4-tert-octylphenol (OP-d). A biological sample was extracted for 60 min at room temperature (25 degrees C) using a stir bar coated with a 500 microm thick polydimethylsiloxane (PDMS) layer. Then, the stir bar was analyzed by TD-GC-MS in the selected ion monitoring (SIM) mode without any derivatization step. The average recoveries in human urine and plasma samples spiked with NP and OP at levels of 0.5 and 10 ng ml-1 were between 95.8 and 99.8% with correction using the added surrogate standards. The limits of quantitation were 0.2 ng ml-1 for NP and 0.02 ng ml-1 for OP. We measured the background levels of NP and OP in five human urine and three human plasma samples from healthy volunteers. NP and OP were not detected in all human urine samples (N.D. < 0.2 ng ml-1 for NP, and N.D. < 0.02 ng ml-1 for OP). However, 0.2-0.3 ng ml-1 for NP and 0.1-0.2 ng ml-1 for OP in human plasma samples were observed by this method.  相似文献   

12.
This paper describes the development and validation of a novel GC-FID method for the determination of alpha-tocopherol concentration in human plasma which does not requires derivatization. The standard solutions and the plasma working solutions were prepared in absolute ethanol. To determine the concentration of alpha-tocopherol in human plasma, an aliquot of the plasma sample was deproteinized with ethanol. alpha-tocopherol was extracted with a mixture of hexane and dichloromethane (9:1). GC separation was performed using a HP-5 capillary column. Nitrogen was used as carrier gas at a flow-rate of 2 ml min(-1). Calibration curves were linear over the concentration range 1-30 microg ml(-1) (for standard solutions and solutions without endogenous alpha-tocopherol in plasma) and 5-34 microg ml(-1) (for solutions with endogenous alpha-tocopherol in plasma). Absolute recovery, precision, sensitivity and accuracy assays were carried out. The analytical recovery of alpha-tocopherol from plasma averaged 97.44%. The limit of quantification (LOQ) and the limit of detection (LOD) of method for standard samples were 0.35 microg.ml(-1) and 0.30 microg.ml(-1), respectively. Within-day and between-day precision, expressed as the relative standard deviation (RSD) were less than 4%, and accuracy (relative error) was better than 8%. This novel method, developed and validated in our laboratory, could be successfully applied to the in-vivo determination of alpha-tocopherol. The endogenous alpha-tocopherol amounts in blood of twelve healthy volunteers with no vitamin drug usage were measured with this method.  相似文献   

13.
A simple and highly sensitive method that involves hollow-fiber-supported liquid phase microextraction (HF-LPME) with in situ derivatization and gas chromatography-mass spectrometry (GC-MS) was developed for the determination of chlorophenols (CPs) such as 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TrCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) in human urine samples. Human urine samples were enzymatically de-conjugated with beta-glucuronidase and sulfatase. After de-conjugation, HF-LPME with in situ derivatization was performed. After extraction, 2mul of extract was carefully withdrawn into a syringe and injected into the GC-MS system. The limits of detection (S/N=3) and quantification (S/N>10) of CPs in the human urine samples are 0.1-0.2ngml(-1) and 0.5-1ngml(-1), respectively. The calibration curve for CPs is linear with a correlation coefficient of >0.99 in the range of 0.5-500ngml(-1) for DCP and TrCP, and of 1-500ngml(-1) for TeCP and PCP, respectively. The average recoveries of CPs (n=6) in human urine samples are 81.0-104.0% (R.S.D.: 1.9-6.6%) with correction using added surrogate standards. When the proposed method was applied to human urine samples, CPs were detected at sub-ngml(-1) level.  相似文献   

14.
Estrogen metabolites play important roles in the development of female-related disorders and homeostasis of the bone. To improve detectability, a validated gas chromatography-mass spectrometry (GC-MS) method was conducted with two-phase extractive ethoxycarbonlyation (EOC) and subsequent pentafluoropropionyl (PFP) derivatization was introduced. The resulting samples were separated through a high-temperature MXT-1 column within an 8 min run and were detected in the selected ion monitoring (SIM) mode. The optimized analytical conditions led to good separation with a symmetric peak shape for 19 estrogens as their EOC-PFP derivatives. The limit of quantification (LOQ) was from 0.02 to ~0.1 ng/ml for most estrogens analyzed, except for 2-hydroxyestriol (0.5 ng/ml). The devised method was found to be linear (r2 > 0.995) in the range from the LOQ to 40 ng/ml, whereas the precision (% CV) and accuracy (% bias) ranged from 1.4 to 10.5% and from 91.4 to 108.5%, respectively. The good sensitivity and selectivity of this method even allowed quantification of the estrogen metabolites in urine samples obtained from the postmenopausal female patients with osteoporosis. The present technique can be useful for clinical diagnosis as well as to better understand the pathogenesis of estrogen-related disorders in low-level quantification.  相似文献   

15.
We devised a sensitive and simple method to simultaneously determine bromvalerylurea and allylisopropylacetylurea in human blood and urine by gas chromatography-mass spectrometry. Bromvalerylurea and allylisopropylacetylurea were extracted using an Extrelut column with an internal standard, 2-bromohexanoylurea, followed by derivatization with heptafluorobutyric anhydride. The derivatized extract was submitted to GC-MS analysis of EI-SIM mode. The calibration curves of both compounds were linear in the concentration range from 0.01 to 10 microg/ml in both blood and urine samples. The lower limits of detection of bromvalerylurea and allylisopropylacetylurea were 0.005 and 0.005 microg/ml, respectively. This method proved most useful in accurately identifying these drugs in blood and urine from an autopsied individual.  相似文献   

16.
4-Hydroxybutyric acid (4HB) was analyzed by gas chromatography-mass spectrometry. Under acidified conditions, 4HB is difficult to detect due to lactonization. Using a urine sample containing 0.01 mg creatinine, we performed trimethylsilyl derivatization without extraction, only adding dimethylsuccinic acid as an internal standard and 10 microl of 0.1 N NaOH methanol solution with adequate evaporation. Urine 4HB levels in a patient with 4-hydroxybutyric aciduria was determined to be 1258 mmol/mol Cr (control, 0.28-2.81 mmol/mol Cr) in this method. Direct derivatization of samples without extraction showed good reproducibility and linearity. Only a small sample of urine was required. Alkalinization by NaOH prevented not only lactonization of 4HB, but also loss of the compounds during evaporation.  相似文献   

17.
The metabolism of endogenous estrogens is complicated and certain metabolic patterns may reflect an individual risk of estrogen-dependent diseases such as breast cancer. Since the 1960s we have been constantly involved in developing estrogen profiling methods, in the beginning using gas chromatography and later gas chromatography–mass spectrometry (GC–MS) in the selected ion monitoring mode (SIM) and finally utilizing isotope dilution (ID–GC–MS–SIM). The addition of the dietary phytoestrogens to the profile rendered the method even more complicated. The present work presents the final estrogen profile method for 15 endogenous estrogens, four lignans, seven isoflavonoids and coumestrol in one small urine sample (1/150th of a 24 h human urine sample, minimum 2.5–5 ml) with complete validation including investigations as to the precision, sensitivity, accuracy and specificity. The method does not include the minimal amounts of unconjugated estrogens in urine. It may also be used for animal (e.g. rat and mouse) urine using a minimum of 2 ml of usually pooled sample. Despite its complexity it was found to fulfill the reliability criteria, resulting in highly specific and accurate results.  相似文献   

18.
Microorganisms known to hydroxylate alkaloids, amino acids, and aromatic substrates were examined for their potential to hydroxylate 17 beta-estradiol and estrone. Thin-layer chromatography of fermentation extracts revealed a wide range of steroid products. Aspergillus alliaceus (UI 315) was the only culture capable of producing good yields of catechol estrogens with 17 beta-estradiol. The organism also transformed estrone but not to catechol products. Analytical experiments with high-performance liquid chromatography revealed that A. alliaceus formed 4- and 2-hydroxyestradiol with yields of 45 and 16%, respectively. A preparative-scale incubation was conducted in 2 liters of medium containing 1 g of 17 beta-estradiol as substrate. 4-Hydroxyestradiol was isolated and identified by proton nuclear magnetic resonance and high-resolution mass spectrometry. Ascorbic acid was added to microbial reaction mixtures as an antioxidant to prevent the decomposition of unstable catechol estrogen metabolites. The microbial transformation of 17 beta-estradiol by A. alliaceus provides an efficient one-step method for the preparation of catechol estrogens.  相似文献   

19.
Microorganisms known to hydroxylate alkaloids, amino acids, and aromatic substrates were examined for their potential to hydroxylate 17 beta-estradiol and estrone. Thin-layer chromatography of fermentation extracts revealed a wide range of steroid products. Aspergillus alliaceus (UI 315) was the only culture capable of producing good yields of catechol estrogens with 17 beta-estradiol. The organism also transformed estrone but not to catechol products. Analytical experiments with high-performance liquid chromatography revealed that A. alliaceus formed 4- and 2-hydroxyestradiol with yields of 45 and 16%, respectively. A preparative-scale incubation was conducted in 2 liters of medium containing 1 g of 17 beta-estradiol as substrate. 4-Hydroxyestradiol was isolated and identified by proton nuclear magnetic resonance and high-resolution mass spectrometry. Ascorbic acid was added to microbial reaction mixtures as an antioxidant to prevent the decomposition of unstable catechol estrogen metabolites. The microbial transformation of 17 beta-estradiol by A. alliaceus provides an efficient one-step method for the preparation of catechol estrogens.  相似文献   

20.
A highly sensitive and specific quantification method of estrone and estradiol in human serum was described based upon the use of picolinoyl derivatization and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) in a positive mode. Estrogens were treated with picolinoyl chloride hydrochloride or picolinic acid and 2-methyl-6-nitrobenzoic anhydride followed by a solid-phase extraction with ODS cartridge. Picolinoyl derivatization proceeded quantitatively even in a microscale, and the picolinoyl esters provided simple positive ESI-mass spectra showing [M+H](+) as base peaks for these estrogens. The picolinoyl derivatives of these estrogens showed 100-fold higher detection response compared to underivatized intact molecules by LC-ESI-MS (selected reaction monitoring). Using this derivatization, estrogens spiked in the charcoal treated human serum samples were analyzed with limit of quantification (LOQ), intra-day accuracy and precision of 1.0pg/ml, 96.0% and 9.9% for estrone, and 0.5pg/ml, 84.4% and 12.8% for estradiol, respectively. Estrone and estradiol added to the crude serum samples were recovered with comparable LOQ and accuracy obtained for the charcoal treated serum samples as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号