首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soleus H-reflex reveals down modulation with increased postural difficulty. Role of this posture-related reflex modulation is thought to shift movement control toward higher motor centers in order to facilitate more precise postural control. Present study hypothesized that the ability to modulate H-reflex is related to one’s ability to dynamically balance while in an unstable posture. This study examined the relationship between dynamic balancing ability and soleus H-reflex posture-related modulation. Thirty healthy adults participated. The soleus maximal H-reflex (Hmax), motor response (Mmax), and background EMG activity (bEMG) were obtained during three postural conditions: prone, open-legged standing, and closed-legged standing. Hmax/Mmax ratios were normalized via the corresponding bEMG in order to remove the effects of background muscle activity from the obtained H-reflex. Reflex modulation was calculated as the ratio of the normalized Hmax/Mmax ratios in one postural condition to another posture in a more difficult condition. Dynamic balancing ability was assessed by testing stability while standing on a wobble board. A significant negative correlation was observed between balancing scores and reflex modulation from open-legged standing to closed-legged standing. This suggests that the ability to modulate monosynaptic stretch reflex excitability in response to a changing posture is a significant factor for dynamic balancing.  相似文献   

2.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

3.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.  相似文献   

4.
本文用低压舱模拟不同海拔高度,测定横断脊髓大鼠脊髓反射兴奋性恢复曲线。断脊髓组和对照组自海拔2000m以后脊髓反射兴奋性逐渐增高,但两组出现差异有显著性的海拔高度不同,断脊髓组为海拔4000m,对照组为海拔3000m。对照组与断脊髓组在同一海拔高度上比较,除海拔3000m时差别有显著性(P<0.05)外,在其它各海拔高度上两组间差异无显著性(P>0.05)。结果表明,低氧时脊髓以上中枢和脊髓都参与脊髓反射兴奋性升高的调节  相似文献   

5.
Combined V-wave and Hoffmann (H) reflex measurements were performed during maximal muscle contraction to examine the neural adaptation mechanisms induced by resistance training. The H-reflex can be used to assess the excitability of spinal alpha-motoneurons, while also reflecting transmission efficiency (i.e., presynaptic inhibition) in Ia afferent synapses. Furthermore, the V-wave reflects the overall magnitude of efferent motor output from the alpha-motoneuron pool because of activation from descending central pathways. Fourteen male subjects participated in 14 wk of resistance training that involved heavy weight-lifting exercises for the muscles of the leg. Evoked V-wave, H-reflex, and maximal M-wave (M(max)) responses were recorded before and after training in the soleus muscle during maximal isometric ramp contractions. Maximal isometric, concentric, and eccentric muscle strength was measured by use of isokinetic dynamometry. V-wave amplitude increased approximately 50% with training (P < 0.01) from 3.19 +/- 0.43 to 4.86 +/- 0.43 mV, or from 0.308 +/- 0.048 to 0.478 +/- 0.034 when expressed relative to M(max) (+/- SE). H-reflex amplitude increased approximately 20% (P < 0.05) from 5.37 +/- 0.41 to 6.24 +/- 0.49 mV, or from 0.514 +/- 0.032 to 0.609 +/- 0.025 when normalized to M(max). In contrast, resting H-reflex amplitude remained unchanged with training (0.503 +/- 0.059 vs. 0.499 +/- 0.063). Likewise, no change occurred in M(max) (10.78 +/- 0.86 vs. 10.21 +/- 0.66 mV). Maximal muscle strength increased 23-30% (P < 0.05). In conclusion, increases in evoked V-wave and H-reflex responses were observed during maximal muscle contraction after resistance training. Collectively, the present data suggest that the increase in motoneuronal output induced by resistance training may comprise both supraspinal and spinal adaptation mechanisms (i.e., increased central motor drive, elevated motoneuron excitability, reduced presynaptic inhibition).  相似文献   

6.

Background  

Among the main clinical applications of the H-reflex are the evaluation of the S1 nerve root conductivity such as radiculopathy and measurement of the excitability of the spinal motoneurons in neurological conditions. An attempt has been made to reduce the pathway over which H-reflex can be obtained in a hope to localize a lesion to the S1 nerve root, so the S1 central loop has been suggested. The main goal of this study is the estimation of the H-reflex number of synapse(s) for better understanding of the physiology of this practical reflex.  相似文献   

7.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

8.
Both contraction type and ageing may cause changes in H-reflex excitability. H reflex is partly affected by presynaptic inhibition that may also be an important factor in the control of MU activation. The purpose of the study was to examine age related changes in H-reflex excitability and motor unit activation patterns in dynamic and in isometric contractions. Ten younger (YOUNG) and 13 elderly (OLD) males performed isometric (ISO), concentric (CON) and eccentric (ECC) plantarflexions with submaximal activation levels (20% and 40% of maximal soleus surface EMG). Intramuscular EMG data was analyzed utilizing an intramuscular spike amplitude frequency histogram method. Average H/M ratio was always lowest in ECC (n.s.). Mean spike amplitude increased with activation level (P < .05), whereas no significant differences were found between contraction types. Both H-reflex excitability, which may be due to an increase in presynaptic inhibition, and mean spike frequency were higher in YOUNG compared to OLD. In OLD the mean spike frequency was significantly smaller in CON compared to ISO. Lack of difference in mean spike amplitude and frequency across contraction types in YOUNG would imply a similar activation strategy, whereas the lower frequency in dynamic contractions in OLD could be related to synergist muscle behavior.  相似文献   

9.
Group I muscle afferents modulate the excitability of motor neurons through excitatory and inhibitory spinal reflexes. Spinal reflex relationships between various muscle pairs are well described in experimental animals but not in the human upper limb, which exhibits a fine control of movement. In the present study, spinal reflexes between the extensor carpi radialis (ECR) and pronator teres (PT) muscles were examined in healthy human subjects using a post-stimulus time histogram method. Electrical stimulation of low-threshold afferents of ECR nerves increased the motor neuron excitability in 31 of 76 PT motor units (MUs) in all eight subjects tested, while stimulation of low-threshold afferents of PT nerves increased the motor neuron excitability in 36 of 102 ECR MUs in all 10 subjects. The estimated central synaptic delay was almost equivalent to that of homonymous facilitation. Mechanical stimulation (MS) of ECR facilitated 16 of 30 PT MUs in all five subjects tested, while MS of PT facilitated 17 of 30 ECR MUs in all six subjects. These results suggest excitatory reflex (facilitation) between PT and ECR. Group I afferents should mediate the facilitation through a monosynaptic path.  相似文献   

10.
The purpose of this study was to examine the effects of a 5-wk unilateral, isometric strength-training program on plasticity in the spinal Hoffmann (H-) reflex in both the trained and untrained legs. Sixteen participants, 22-42 yr old, were assigned to either a control (n = 6) or an exercise group (n = 10). Both groups were tested for plantar flexion maximal voluntary isometric contractions (MVIC) and soleus H-reflex amplitude in both limbs, at the beginning and at the end of a 5-wk interval. Participants in the exercise group showed significantly increased MVIC in both legs after training (P < 0.05), whereas strength was unchanged in the control group for either leg. Subjects in the exercise group displayed increased (P < 0.05) H-reflex amplitudes on the ascending limb of the recruitment curve (at an equivalent M wave of 5% of the maximal M wave, H(A)) only in the trained leg. Maximal H-reflex and M-wave remained unchanged with training. Increased amplitude of H(A) in the trained limb concurrent with increased strength suggests that spinal mechanisms may underlie the changes in strength, possibly because of increased alpha-motoneuronal excitability or reduced presynaptic inhibition. Despite a similar increase in strength in the contralateral limb of the exercise group, H(A) amplitude was unchanged. We conclude that the cross-education effect of strength training may be due to supraspinal to a greater extent than spinal mechanisms.  相似文献   

11.
The reflex excitability of the soleus spinal motoneurons was assessed in healthy subjects performing different types of motor tasks: voluntary contraction of the flexor (dorsal flexion) and extensor (plantar flexion) muscles of the foot. The effect of the contraction strength of these muscles was also evaluated. During dorsal flexion of the ipsi-and contralateral feet, changes in the reflex ecitability of the soleus motoneurons were unidirectional: the excitability decreased. The decrease in the reflex excitability was more profound during dorsal flexion with the maximum strength than with the half-maximum strength. During the plantar flexion of the ipsi-and contralateral feet, the excitability of the soleus motoneurons changed in opposite directions: in some subjects it increased, while in the others it decreased. The reflex excitability of the soleus motoneurons changed to a greater extent during dorsal or plantar flexion of the ipsilateral foot. In the case of plantar flexion, the soleus motor center is possibly affected by a broader spectrum of influences than in the case of dorsal flexion, which can explain the variations in the reflex excitability changes during plantar flexion.  相似文献   

12.
Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains dense anatomical interconnections with the cortical motor system. When a startling AS is delivered, prior to transcranial magnetic stimulation (TMS), the AS produces a suppression of motor evoked potential (MEP) amplitude in hand and arm muscles of healthy subjects. Here we analyzed the conditioning effect of a startling AS on MEP amplitude evoked by TMS to the primary motor leg area. Ten healthy volunteers participated in two experiments that used a conditioning-test paradigm. In the first experiment, a startling AS preceded a suprathreshold transcranial test stimulus. The interstimulus interval (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in the slightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating different mechanism of auditory-to-motor interactions at cortical and spinal level of motor system.  相似文献   

13.
The effects of season and acclimation temperature on the latency of the leg withdrawal reflex and three of its components have been studied: conduction velocity in the sciatic nerve, spinal conduction time, and contraction time of gastrocnemius muscle. The latency of the leg withdrawal reflex was markedly shortened by cold acclimation: the reaction times were at 6 degrees C 1.54 s in 4 degrees C acclimated and 3.97 s in 24 degrees C acclimated winter frogs. Also, the temperature dependence of the reflex latency was reduced by cold acclimation. Thus, frogs acclimated to cold responded to external stimuli in cold more rapidly than warm-acclimated ones. This cold adaptation of the reflex could not be explained by changes in its studied components. These made up only one-tenth of the reflex response time, and either did not show significant cold acclimation (muscle contraction and spinal conduction times in summer) or showed inverse acclimation, especially when measured at high temperatures (i.e. conduction velocities were reduced by acclimation to cold). Thus, the cold acclimation of the reflex response probably resides in the sensory component of the response. The inverse temperature adaptation response of conduction velocities may reflect a reduced ion permeability across cellular membranes in cold which decreases metabolic energy expenditure during inactive periods.  相似文献   

14.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

15.
Progesterone and estrogen modify thermoregulatory control such that, when both steroids are elevated, body temperature increases and the reflex thermoregulatory control of cutaneous vasodilation is shifted to higher internal temperatures. We hypothesized that the influence of these hormones would also include effects on local thermal control of skin blood flow. Experiments were conducted in women in high-hormone (HH) and low-hormone (LH) phases of oral contraceptive use. Skin blood flow was measured by laser-Doppler flowmetry, and local temperature (T(loc)) was controlled over 12 cm(2) around the sites of blood flow measurement. T(loc) was held at 32 degrees C for 10-15 min and was then decreased at one site from 32 to 20 degrees C in a ramp over 20 min. Next, T(loc) was increased from 32 to 42 degrees C in a ramp over 15 min at a separate site. Finally, T(loc) at both sites was held at 42 degrees C for 30 min to elicit maximum vasodilation; data for cutaneous vascular conductance (CVC) are expressed relative to that maximum. Whole body skin temperature (T(sk)) was held at 34 degrees C throughout each study to minimize reflex effects from differences in T(sk) between experiments. Baseline CVC did not differ between phases [8.18 +/- 1.38 (LH) vs. 8. 41 +/- 1.31% of maximum (HH); P > 0.05]. The vasodilator response to local warming was augmented in HH (P < 0.05, ANOVA). For example, at T(loc) of 40-42 degrees C, CVC averaged 76.41 +/- 3.08% of maximum in HH and 67.71 +/- 4.43% of maximum in LH (P < 0.01 LH vs. HH). The vasoconstrictor response to local cooling was unaffected by phase (P > 0.05). These findings indicate that modifications in cutaneous vascular control by female steroid hormones include enhancement of the vasodilator response to local warming and are consistent with reports of the influence of estrogen to enhance nitric oxide-dependent vasodilator responses.  相似文献   

16.
Recording of the H-reflex was used to study the changes in the reflex excitability of soleus motoneurons during dorsal and plantar flexions of the ipsilateral and contralateral feet performed with different strengths by 15 healthy subjects. The dorsiflexion of the ipsilateral foot was accompanied by the “classic” reciprocal inhibition of the soleus motoneurons, the degree of the inhibition being directly proportional to the strength of the contraction of pretibial muscles and depending on the presence of foot support. The plantar flexion of the ipsilateral foot was accompanied by changes in reflex excitability, which were inversely proportional to the strength of the flexion. This was apparently related to the activation of a mechanism protecting the muscle against excessive contraction. The dorsal and plantar flexions of the contralateral foot were accompanied by similar changes in the reflex excitability of soleus motoneurons, namely, an increase in the case of weak contraction and a decrease in the case of strong contraction. However, the increase in reflex excitability during contralateral dorsiflexion was smaller and its decrease began at a weaker contraction than in the case of contralateral plantar flexion. The changes in the reflex excitability of soleus motoneurons during movements of the contralateral foot, which were also strength-dependent, confirmed the presence of cross-projections that are likely to be part of the generator of the central pattern of lower limb movement coordination.  相似文献   

17.
Abstract

Purpose: The present study aimed to investigate whether spinal reflex excitability is influenced by the site of cerebellar transcranial magnetic stimulation (C-TMS).

Materials and methods: Fourteen healthy volunteers (mean age: 24.6?±?6.6?years [11 men]) participated. Participants lay on a bed in the prone position, with both ankle joints fixed to prevent unwanted movement. Right tibial nerve stimulation was provided to elicit the H-reflex in the right soleus muscle. Conditioning transcranial magnetic stimulation (TMS) was delivered at one of the following sites 110?ms prior to tibial stimulation: right, central, or left cerebellum; midline parietal (Pz) region; or sham stimulation. A total of 10 test trials were included for each condition, in random order. The unconditioned and conditioned H-reflexes were measured during random inter-test trials, and the cerebellar spinal facilitation (CSpF) ratios for each site were calculated (the ratio of conditioned to unconditioned H-reflexes). CSpF ratios were compared among TMS sites.

Results: CSpF ratios were significantly higher at cerebellar sites than at the Pz site or during sham stimulation. However, there was no significant difference in CSpF ratio among cerebellar sites.

Conclusions: TMS conditioning over any part of the cerebellum facilitated the excitability of the spinal motoneuron pool. Facilitation of the H-reflex due to C-TMS may involve the effects of the bilateral descending tract of the spinal cord on the spinal motoneuron pool. Alternatively, direct brainstem stimulation may have activated portions of the bilateral descending tract of the spinal cord.  相似文献   

18.
Nielsen (1938) demonstrated that hypothermia during exercise is independent of room temperature within a range from 5° to 32° C. Subsequently, other investigators confirmed this observation. From these results,Asmussen &Nielsen (1947) concluded that a resetting of the thermoregulatory centre brought about by impulses reaching the brain from the working muscles or from the motor centres takes place. In order to find out whether impulses from motor centres really affect the thermoregulatory centres, we tried, by administration of curare in human beings, to increase the frequency of impulses necessary to bring about a certain amount of mechanical work. However, in 2 series of experiments at room temperatures of 23° and 34° C respectively and at a constant work output of 3 mkp/sec, no significant differences in body temperature (measured in the lower esophagus) before and during curare infusion could be detected. In the resting conditions, curare exerts no influence on body temperature. In normal subjects performing low work (3 mkp/sec) the body temperature decreases at a room temperature of 23° C but increases at a room temperature of 32° C. In conclusion, the hyperthermia during exercise cannot be due to a resetting of thermoregulatory centres. It works rather like a proportional closed loop control system. The relative independence of the hyperthermia from the environmental temperature suggests a considerable influence of the latter parameter via the thermoreceptors of the skin on the thermoregulation during work.  相似文献   

19.
Electromyographic recordings of contralateral m. gastrocnemius of the rat after unilateral section of Achilles' tendon (tenotomy) were studied. Motor reflex, Hoffman reflex and firing of motor units of contralateral m. gastrocnemius were recorded in control and in 10 days after tendotomy. Motor units changed their firing in the background and in reaction to sciatic nerve stimulation. The results of study showed that unilateral section of Achilles' tendon increased the excitability of single motoneurons of contralateral spinal senters.  相似文献   

20.
The rate of incorporation of labeled precursors for RNA ([14C]uracil) and protein ([14C]DL-leucine) into the cells of the synchronous culture of Candida utilis VKMY-1668 (the optimum temperature of growth, 31--32 degrees C) was studied as a function of different temperatures (28, 31, 32, 34, 36, 38, and 41 decrees C). The yeast was grown on a simple mineral medium containing glycerol. RNA synthesis was found to be more susceptible to elevated temperature than protein synthesis: the maximum rate of incorporation was registered at 32--34 degrees C for [14C]DL-leucine and only at 32 degrees C for [14C]uracil (the rate of its incorporation at 34 degrees C decreased by 50% as compared to that at 32 degrees C). The rate of incorporation of [14C]uracil at 34 degrees C reached 100% (the rate at 32 degrees C) when yeast autolysate was added to the medium, and 75 and 70%, respectively, upon the addition of DL-methionine or Mg2+ (as compared to 50% without them).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号