首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mild and nonlethal heat shock (i.e., hyperthermia) is known to protect the myocardium and cardiomyocytes against ischemic injury. In the present study, we have shown that heat shock regulates the respiration of cultured neonatal cardiomyocytes (cardiac H9c2 cells) through activation of nitric oxide synthase (NOS). The respiration of cultured cardiac H9c2 cells subjected to mild heat shock at 42 degrees C for 1 h was decreased compared with that of control. The O2 concentration at which the rate of O2 consumption is reduced to 50% was increased in heat-shocked cells, indicating a lowering of O2 affinity in the mitochondria. Western blot analyses showed a fourfold increase in the expression of heat shock protein (HSP) 90 and a twofold increase in endothelial NOS (eNOS) expression in the heat-shocked cells. Immunoblots of eNOS, inducible NOS (iNOS), and neuronal NOS (nNOS) in the immunoprecipitate of HSP90 of heat-shocked cells showed that there was a sevenfold increase in eNOS and no changes in iNOS and nNOS. Confocal microscopic analysis of cells stained with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate showed higher levels of NO production in the heat-shocked cells than in control cells. The results indicate that heat shock-induced HSP90 forms a complex with eNOS and activates it to increase NO concentration in the cardiac H9c2 cells. The generated NO competitively binds to the complexes of the respiratory chain of the mitochondria to downregulate O2 consumption in heat-shocked cells. On the basis of these results, we conclude that myocardial protection by hyperthermia occurs at least partly by the pathway of HSP90-mediated NO production, leading to subsequent attenuation of cellular respiration.  相似文献   

2.
The effects of specific microtubule-active agents on nitric oxide (NO) production were examined in pulmonary artery endothelial cells (PAEC). PAEC were incubated with taxol, which stabilizes microtubules, or nocodazole, which disrupts microtubules, or both for 2-4 h. We then examined NO production, endothelial NO synthase (eNOS) activity, and eNOS association with heat shock protein (HSP) 90. Incubation of PAEC with taxol (15 microM) for 2-4 h resulted in an increase in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. Incubation of PAEC with nocodazole (50 microM) for 2-4 h induced a decrease in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. The presence of taxol in the culture medium prevented the effects of nocodazole on NO production and eNOS activity in PAEC. Geldanamycin, a HSP90 inhibitor, prevented the taxol-induced increase in eNOS activity. Taxol and nocodazole did not affect eNOS, HSP90, and tubulin protein contents in PAEC, as detected using Western blot analysis. These results indicate that the polymerization state of the microtubule cytoskeleton regulates NO production and eNOS activity in PAEC. The changes in eNOS activity induced by modification of microtubules are due, at least in part, to the altered binding of HSP90 to eNOS protein.  相似文献   

3.
This study examines the notion that heat shock protein (HSP) 90 binding to nitric oxide (NO), endothelial NO synthase (eNOS), and PI3K-Akt regulate angiopoietin (Ang)-1-induced angiogenesis in porcine coronary artery endothelial cells (PCAEC). Exposure to Ang-1 (250 ng/ml) for periods up to 2 h resulted in a time-dependent increase in eNOS phosphorylation at Ser 1177 that occurred by 5 min and peaked at 60 min. This was accompanied by a gradual increase in NO release. Ang-1 also led to stimulation of HSP90 binding to eNOS and a significant increase in Akt phosphorylation. Thirty minutes of pretreatment of cells with either 1 microg/ml geldanamycin (a specific inhibitor of HSP90) or 500 nM wortmannin [a specific phosphatidylinositol 3 (PI3)-kinase (PI3K) inhibitor] significantly attenuated Ang-1-stimulated eNOS phosphorylation and NO production. Exposure to Ang-1 caused an increase in endothelial cell migration, tube formation, and sprouting from PCAEC spheroids, and pharmacological blockage of HSP90 function or inhibition of PI3K-Akt pathway completely abolished these effects. Inhibition of nitric oxide synthase by NG-nitro-l-arginine methyl ester (2.5 mM) also resulted in a significant decrease in Ang-1-induced angiogenesis. We conclude that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to Ang-1-induced eNOS phosphorylation, NO production, and angiogenesis in PCAEC.  相似文献   

4.
The present study examined potential interactions between endothelial NO synthase (eNOS), heat shock protein (HSP)90, and Akt in vascular endothelial cells stimulated with globular adiponectin to produce nitric oxide (NO). Globular adiponectin-induced eNOS phosphorylation was accompanied by eNOS-HSP90-Akt complex formation, resulting in a dose-dependent increase in NO release. Globular adiponectin stimulated binding of HSP90 to eNOS, and inhibition of HSP90 significantly suppressed globular adiponectin-stimulated NO release. Globular adiponectin also caused Akt phosphorylation, and inhibition of PI3 kinase significantly suppressed globular adiponectin-stimulated NO release. This study also examined whether globular adiponectin really induces endothelial-dependent vasodilation using rings from rat thoracic aorta. It was observed that globular adiponectin caused dose-dependent vasorelaxation in the aorta. These results indicate that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced eNOS phosphorylation and NO production, and to endothelium-dependent vasorelaxation.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. Heat shock protein 90 (HSP90) binds directly to eNOS, augmenting NO production. We have used purified proteins to characterize further the mechanism by which HSP90 increases eNOS activity at low (100 nm) and high (10 microm) Ca(2+) levels. In the presence of calmodulin (CaM), HSP90 increased eNOS activity dose dependently at both low and high Ca(2+) concentrations. This effect was abolished by the specific HSP90 inhibitor geldanamycin (GA) at both calcium concentrations. The EC(50) values of eNOS for both Ca(2+) and CaM were decreased in the presence of HSP90. HSP90 also significantly increased the rate of NADPH-dependent cytochrome c reduction by eNOS at both low and high Ca(2+) concentrations. HSP90 bound to eNOS in a dose-dependent manner, and the amount of bound HSP90 also increased with increasing Ca(2+)/CaM. At 100 nm Ca(2+), HSP90 promoted dose-dependent CaM binding to eNOS that was fully inhibitable by GA. At high calcium, HSP90 did not affect CaM binding to eNOS, but GA inhibited HSP90 binding to eNOS. At high Ca(2+), HSP90 caused the V(max) of eNOS for l-arginine to increase by 2-fold, but the K(m) of eNOS was unchanged. HSP90 bound preferentially to CaM-prebound eNOS and significantly increased both its NO synthesis and reductase activities. These data support that HSP90 promotes eNOS activity by two mechanisms: (i) a CaM-dependent mechanism operative at low Ca(2+) concentrations, characterized by an increase in the affinity of eNOS for CaM and (ii) a CaM-independent mechanism apparent at high Ca(2+) concentrations, characterized by stimulation of eNOS reductase activity without further change in CaM binding. These studies contribute to our understanding of eNOS activation by HSP90 and provide a basis for in vitro studies of other eNOS-interacting proteins.  相似文献   

6.
This study compares the effects of heat and osmotic stress on heat stress protein (HSP) production while examining the putative protective action of HSPs on modulation of Na(+),K(+),Cl(-) and Na(+),P(i) cotransporters in Madin-Darby canine kidney (MDCK) epithelial cells by severe heat stress (46 degrees C, 15 min). Preconditioning heat stress (43 degrees C, 20 min) followed by 4 h recovery at 37 degrees C led to a 35-fold increase of HSP70 mRNA expression measured by Northern blot analysis. The protein content of HSP70 and HSP27, assessed by Western blots, was augmented by 5- and 2-fold, respectively, after 6 h of recovery. In contrast to preconditioning heat stress, hyperosmotic stress (520 vs. 320 mosm) elevated HSP70 mRNA content only by 7-fold and did not significantly affect the protein content of HSP70 or HSP27. Neither cell survival, assessed as lactate dehydrogenase (LDH) release, nor the basal activities of the ion transporters and their modulation by protein kinase C, P(2)-purinoceptor and cell volume were altered by preconditioning heat stress. Severe heat stress increased extracellular LDH content from 3+/-2 to 23+/-5% and enhanced Na(+),K(+),Cl(-) and Na(+),P(i) cotransport activity by 2-3-fold. The volume- and protein kinase C-dependent regulation of these carriers was abolished by severe heat stress while regulation by P(2)-purinoceptors was preserved. Preconditioning heat stress diminished severe heat stress-induced LDH release to 11+/-4% but did not protect Na(+),K(+),Cl(-) and Na(+),P(i) cotransporters from activation by severe heat stress and did not prevent severe heat stress-induced inactivation of protein kinase C- and volume-dependent signaling pathways. These results show that in MDCK cells, preconditioning heat stress-induced HSPs are not involved in the regulation of Na(+),K(+),Cl(-) and Na(+),P(i) cotransporters and do not protect them from modulation by severe heat stress.  相似文献   

7.
Endothelial nitric-oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. We recently used purified proteins to characterize the mechanisms by which heat shock protein 90 (HSP90) increases eNOS activity at low and high Ca2+ levels (Takahashi, S. and Mendelsohn, M. E. (2003) J. Biol. Chem. 278, 9339-9344). Here we extend these studies to explore interactions between HSP90, Akt, and eNOS. In studies with purified proteins, HSP90 increased the initial rate and maximal extent of Akt-mediated eNOS phosphorylation and activation at low Ca2+ levels. Akt was not observed in the eNOS complex in the absence of HSP90, but both active and inactive Akt associated with eNOS in the presence of HSP90. Direct binding of Akt to HSP90 was observed even in the absence of eNOS. HSP90 also facilitated CaM binding to eNOS irrespective of Akt presence. Geldanamycin (GA) disrupted HSP90-eNOS binding, reduced HSP90-stimulated CaM binding, and blocked both recruitment of Akt to the eNOS complex and phosphorylation of eNOS at Ser-1179. Akt phosphorylated only CaM-bound eNOS, in an HSP90-independent manner. HSP90 and active Akt together increased eNOS activity synergistically, which was reversed by GA. In bovine aortic endothelial cells (BAECs), the effects of vascular endothelial growth factor (VEGF) and insulin on eNOS-HSP90-Akt complex formation and eNOS activation were compared. BAPTA-AM inhibited VEGF- but not insulin-induced eNOS-HSP90-Akt complex formation and eNOS phosphorylation. Insulin caused rapid, transient increase in eNOS activity correlated temporally with the formation of eNOS-HSP90-Akt complex. GA prevented insulin-induced association of HSP90, Akt and CaM with eNOS and inhibited eNOS activation in BAECs. Both platelet-derived growth factor (PDGF) and insulin induced activation of Akt in BAECs, but only insulin caused HSP90-Akt-eNOS association and eNOS phosphorylation. These results demonstrate that HSP90 and Akt synergistically activate eNOS and suggest that this synergy contributes to Ca2+-independent eNOS activation in response to insulin.  相似文献   

8.
The hepatopulmonary syndrome is a complication of cirrhosis that associates an overproduction of nitric oxide (NO) in lungs and a NO defect in the liver. Because endothelial NO synthase (eNOS) is regulated by caveolin that decreases and heat shock protein 90 (HSP90) that increases NO production, we hypothesized that an opposite regulation of eNOS by caveolin and HSP90 might explain the opposite NO production in both organs. Cirrhosis was induced by a chronic bile duct ligation (CBDL) performed 15, 30, and 60 days before sample collection and pharmacological tests. eNOS, caveolin, and HSP90 expression were measured in hepatic and lung tissues. Pharmacological tests to assess NO released by shear stress and by acetylcholine were performed in livers (n = 28) and lungs (n = 28) isolated from normal and CBDL rats. In lungs from CBDL rats, indirect evidence of high NO production induced by shear stress was associated with a high binding of HSP90 and a low binding of caveolin to eNOS. Opposite results were observed in livers from CBDL rats. Our study shows an opposite posttranslational regulation of eNOS by HSP90 and caveolin in lungs and liver from rats with CBDL. Such opposite posttranslational regulation of eNOS by regulatory proteins may explain in part the pulmonary overproduction of NO and the hepatic NO defect in rats with hepatopulmonary syndrome.  相似文献   

9.
The synthesis of a major heat shock protein (HSP 70) was measured in HeLa cells incubated at 42.5 degrees C and then transferred to 37 degrees C or 30 degrees C. After 90 min, synthesis of HSP 70 decreased by 54 and 85%, respectively, whereas HSP 70 mRNA was reduced at most by 20%. Therefore, the reduced synthesis of HSP 70 could not be accounted for by mRNA turnover. HSP 70 was associated with large polyribosomes (6-10 ribosomes) in cells kept at 42.5 degrees C, but with medium or small polyribosomes in cells transferred to 37 degrees C or 30 degrees C (5-6 or 2-3 ribosomes, respectively). Addition of puromycin to these cells resulted in the release of all ribosomes from HSP 70 mRNA, indicating that they were translationally active. The regulation of HSP 70 synthesis was investigated in cell-free systems prepared from heat-shocked or control cells and incubated at 30 degrees C and 42 degrees C. After 5 min at 42 degrees C, the cell-free system from heat-shocked cells synthesized protein at 3 times the rate of the control cell-free system. This difference was in large part due to synthesis of HSP 70. Addition of HSP mRNA to the control cell-free system stimulated protein synthesis at 42 degrees C, but not at 30 degrees C. These findings suggest that translation of HSP 70 mRNA is specifically promoted at high temperature and repressed during recovery from heat shock by regulatory mechanisms active at the level of initiation.  相似文献   

10.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased nitric oxide (NO) release and impaired pulmonary vasodilation. We investigated the hypothesis that decreased association of heat shock protein 90 (HSP90) with endothelial NO synthase (eNOS) impairs NO release and vasodilation in PPHN. The responses to the NOS agonist ATP were investigated in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus, and in sham ligation controls. ATP caused dose-dependent vasodilation in control pulmonary resistance arteries, and this response was attenuated in PPHN vessels. The response of control pulmonary arteries to ATP was attenuated by NG-nitro-l-arginine methyl ester (l-NAME), a NOS antagonist, and geldanamycin, an inhibitor of HSP90-eNOS interaction. The attenuated response to ATP observed in PPHN was improved by pretreatment of vessels with l-NAME or 4,5-dihydroxy-1,3-benzene-disulfonate, a superoxide scavenger. Pulmonary arteries from PPHN lambs had decreased basal levels of HSP90 in association with eNOS. Association of HSP90 with eNOS and NO release increased in response to ATP in control pulmonary artery endothelial cells, but not in cells from PPHN lambs. Decreased HSP90-eNOS interactions may contribute to the impaired NO release and vasodilation observed in the ductal ligation model of PPHN.  相似文献   

11.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

12.
Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca(2+) ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr(495) dephosphorylation and eNOS Ser(1177) phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser(1177) phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34-66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser(1177) phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins.  相似文献   

13.
Hyperglycemia is the hallmark of diabetes mellitus. Poor glycemic control is correlated with increased cardiovascular morbidity and mortality. High glucose can trigger endothelial cell apoptosis by de-activation of endothelial nitric oxide synthase (eNOS). eNOS was recently demonstrated to be extensively regulated by Akt and heat shock protein 90 (HSP90). Yet, little is known about the molecular mechanisms that regulate eNOS activity during high glucose exposure. The present study was designed to determine the involvement of protein interactions between eNOS and HSP90 in high glucose-induced endothelial cell apoptosis. The protein interaction of eNOS/HSP90 and eNOS/Akt were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to either control-level (5.5 mM) or high-level (33 mM) glucose for different durations (2, 4, 6, and 24 h). The results showed that the protein interactions between eNOS and HSP90 and between eNOS and Akt and the phosphorylation of eNOS were up-regulated by high glucose exposure for 2-4 h. With longer exposures, these effects decreased gradually. During early hours of exposure, the protein interactions of eNOS/HSP90 and eNOS/Akt and the phosphorylation of eNOS were all inhibited by geldanamycin, an HSP90 inhibitor. High glucose-induced endothelial cell apoptosis was also enhanced by geldanamycin and was reversed by NO donors. LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor, inhibited the association of eNOS/Akt and the phosphorylation of eNOS but had no effect on the interaction between eNOS and HSP90 during early hours of exposure. From our results we propose that, in HUVECs, during early phase of high glucose exposure, apoptosis can be prevented by enhancement of eNOS activity through augmentation of the protein interaction between eNOS and HSP90 and recruitment of the activated Akt. With longer exposure, dysregulation of eNOS activity would result in apoptosis. The present study provides a molecular basis for the effects of eNOS in the prevention of endothelial cells apoptosis during early phase of high glucose exposure. These observations may contribute to the understanding of the pathogenesis of vascular complications in diabetes mellitus.  相似文献   

14.
In this study the stress protein response to unaccustomed maximal eccentric exercise in humans was investigated. Eleven healthy males performed 300 maximal eccentric actions with the quadriceps muscle. Biopsies from vastus lateralis were collected at 30 min and 4, 8, 24, 96, and 168 h after exercise. Cellular regulation and localization of heat shock protein (HSP) 27, alpha B-crystallin, and HSP70 were analyzed by immunohistochemistry, ELISA technique, and Western blotting. Additionally, mRNA levels of HSP27, alpha B-crystallin, and HSP70 were quantified by Northern blotting. After exercise (30 min), 81 +/- 8% of the myofibers showed strong HSP27 staining (P < 0.01) that gradually decreased during the following week. alpha B-Crystallin mimicked the changes observed in HSP27. After exercise (30 min), the ELISA analysis showed a 49 +/- 13% reduction of the HSP27 level in the cytosolic fraction (P < 0.01), whereas Western blotting revealed a 15-fold increase of the HSP27 level in the myofibrillar fraction (P < 0.01). The cytosolic HSP70 level increased to 203 +/- 37% of the control level 24 h after exercise (P < 0.05). After 4 days, myofibrillar-bound HSP70 had increased approximately 10-fold (P < 0.01) and was accompanied by strong staining on cross sections. mRNA levels of HSP27, alpha B-crystallin, and HSP70 were all elevated the first day after exercise (P < 0.01); HSP70 mRNA showed the largest increase (20-fold at 8 h). HSP27 and alpha B-crystallin seemed to respond immediately to maximal eccentric exercise by binding to cytoskeletal/myofibrillar proteins, probably to function as stabilizers of disrupted myofibrillar structures. Later, mRNA and total HSP protein levels, especially HSP70, increased, indicating that HSPs play a role in skeletal muscle recovery and remodeling/adaptation processes to high-force exercise.  相似文献   

15.
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.  相似文献   

16.
Heat shock proteins (HSPs) expression is commonly used as indicators of cellular stress in animals. However, very little is known about either the expression patterns of HSPs or their role in the stress-tolerance phenomenon in early life stages of fish. To this end, we examined the impact of food-deprivation (12 h), reduced oxygen levels (3.5 mg/L for 1 h) and heat shock (HS: + 5 °C for 1 h) on HSP70 and HSP90 protein expression in early life stages of the gilthead sea bream (Sparus aurata), a warm-water aquaculture species. Also, we investigated HSP70 and HSP90 response to food-deprivation (7 days) in early life stages of rainbow trout (Oncorhynchus mykiss), a cool-water aquaculture species, and the tolerance of this larvae to heat shock (either + 5 or + 10 °C for 1 h). Our results clearly demonstrate that food-deprivation enhances HSP70 and HSP90 protein expression in larvae of both species. In gilthead sea bream larvae, the stressors-induced HSP70 and HSP90 (only in the reduced oxygen group) protein expression returned to unstressed levels after 24 h recovery. In fed trout larvae, a + 5 °C heat shock did not elevate HSP70 and HSP90 expression, whereas 100% mortality was evident with a + 10 °C HS. However, food-deprived trout larvae, which had higher HSP70 and HSP90 protein content, survived HS and showed HS-dependent increases in HSP70, but not HSP90 expression. Overall, HSP70 and HSP90 protein expression in early life stages of fish have the potential to be used as markers of nutritional stress, while elevation of the tissue HSPs content may be used as a means to increase stress tolerance during larval rearing.  相似文献   

17.
Previous results showed a genetic component to cardioprotection. Therefore, we investigated the heat shock response in Wistar and Sprague-Dawley (SD) rats at 24 and 48 h. Rats were subjected to whole body hyperthermia achieving colonic temperatures of 40 or 42 degrees C for 20 min. After recovery hearts were excised for protein measurements or were subjected to 30 min of ischemia and then 2 h of reperfusion. Heat shock protein (HSP) expression was determined by Western blotting and infarct size was determined by triphenyltetrazolium staining. All groups of SD and Wistar rats demonstrated HSP72 and HSP90 induction at both time points in response to a heat stress of 42 degrees C. At 24 h there was only a significant reduction in infarct size seen in control vs. small SD (60.0 +/- 4.8 vs. 26.5 +/- 2.3) rats. However, at 48 h control versus small SD (60.0 +/- 4.8 vs. 17.6 +/- 3.8) and Wistar (59.4 +/- 4.3 vs. 29.8 +/- 6.0) and control versus large SD (53.7 +/- 2.6 vs. 19.8 +/- 4.7) and Wistar (57.3 +/- 1.6 vs. 34.5 +/- 2.8) rats demonstrated a significant reduction in infarct size with a greater reduction observed in SD rats. We conclude that heat shock-induced cardioprotection in rats is dependent on strain, temperature, time after stress, and size.  相似文献   

18.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

19.
Previously, we have shown that pulmonary arterial endothelial cells (PAECs) isolated from fetal lambs produce significant levels of nitric oxide (NO) but minimal superoxide upon stimulation, whereas PAECs isolated from 4-wk-old lambs produce significant amounts of both NO and superoxide. These data indicated that a certain degree of uncoupling of endothelial NO synthase (eNOS) occurs in PAECs during postnatal development. In this study, we sought to extend these studies by investigating the potential role of heat shock protein 90 (HSP90) in eNOS coupling. Western blot analyses revealed higher HSP90 expression in PAECs isolated from fetal compared with 4-wk-old lambs, whereas the analysis of recombinant human eNOS activation in vitro in the presence of HSP90 indicated that HSP90 significantly augmented NO production while inhibiting superoxide generation from eNOS. To further investigate whether HSP90 could be involved in uncoupling of eNOS in PAECs isolated from 4-wk-old lambs, we utilized an adenovirus to overexpress HSP90. We found that overexpression of HSP90 significantly increased the shear-stimulated association of HSP90 with eNOS and led to significant increases in NO production and reduced NOS-dependent superoxide generation. Conversely, the exposure of PAECs isolated from fetal lambs to the HSP90 inhibitor radicicol led to significant decreases in eNOS-HSP90 interactions, decreased shear-stimulated NO generation, and increased NOS-dependent superoxide production indicative of eNOS uncoupling. Finally, we examined eNOS-HSP90 interactions in our lamb model of pulmonary hypertension associated with increased pulmonary blood flow (shunt). Our data indicate that HSP90-eNOS interactions were decreased in shunt lambs and that this was associated with decreased NO generation and an increase in eNOS-dependent generation of superoxide. Together, our data support a significant role for HSP90 in promoting NO generation and inhibiting superoxide generation by eNOS and indicate that the disruption of this interaction may be involved in the endothelial dysfunction associated with pulmonary hypertension.  相似文献   

20.
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号