首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NMR structure of the globular domain of the human prion protein (hPrP) with residues 121-230 at pH 7.0 shows the same global fold as the previously published structure determined at pH 4.5. It contains three alpha-helices, comprising residues 144-156, 174-194, and 200-228, and a short anti-parallel beta-sheet, comprising residues 128-131 and 161-164. There are slight, strictly localized, conformational changes at neutral pH when compared with acidic solution conditions: helix alpha1 is elongated at the C-terminal end with residues 153-156 forming a 310-helix, and the population of helical structure in the C-terminal two turns of helix alpha 2 is increased. The protonation of His155 and His187 presumably contributes to these structural changes. Thermal unfolding monitored by far UV CD indicates that hPrP-(121-230) is significantly more stable at neutral pH. Measurements of amide proton protection factors map local differences in protein stability within residues 154-157 at the C-terminal end of helix alpha 1 and residues 161-164 of beta-strand 2. These two segments appear to form a separate domain that at acidic pH has a larger tendency to unfold than the overall protein structure. This domain could provide a "starting point" for pH-induced unfolding and thus may be implicated in endosomic PrPC to PrPSc conformational transition resulting in transmissible spongiform encephalopathies.  相似文献   

2.
Chen W  van der Kamp MW  Daggett V 《Biochemistry》2010,49(45):9874-9881
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.  相似文献   

3.
Apetri AC  Vanik DL  Surewicz WK 《Biochemistry》2005,44(48):15880-15888
One of the arguments in favor of the protein-only hypothesis of transmissible spongiform encephalopathies is the link between inherited prion diseases and specific mutations in the PRNP gene. One such mutation (Asp178 --> Asn) is associated with two distinct disorders: fatal familial insomnia or familial Creutzfeldt-Jakob disease, depending upon the presence of Met or Val at position 129, respectively. In this study, we have characterized the biophysical properties of recombinant human prion proteins (huPrP90-231) corresponding to the polymorphic variants D178N/M129 and D178N/V129. In comparison to the wild-type protein, both polymorphic forms of D178N huPrP show a greatly increased propensity for a conversion to beta-sheet-rich oligomers (at acidic pH) and thioflavine T-positive amyloid fibrils (at neutral pH). Importantly, the conversion propensity for the D178N variant is strongly dependent upon the M/V polymorphism at position 129, whereas under identical experimental conditions, no such dependence is observed for the wild-type protein. Amyloid fibrils formed by wild-type huPrP90-231 and the D178N variant are characterized by different secondary structures, and these structures are further modulated by residue 129 polymorphism. Although on the basis of only in vitro data, this study strongly suggests that polymorphism-dependent phenotypic variability of familial prion diseases may be linked to differences in biophysical properties of prion protein variants.  相似文献   

4.
According to the "protein only" hypothesis, a conformational conversion of the non-pathogenic "cellular" prion isoform into a pathogenic "scrapie" isoform is the fundamental event in the onset of prion diseases. During this pathogenic conversion, helix H1 and two adjacent surface loops L2 and L3 of the normal prion protein are thought to undergo a conformational transition into an extended beta-like structure, which is prompted by interactions with the pre-existing beta-sheet. To get more insight into the interaction between the helix and one of the beta-strands in the partially unfolded prion protein, the solution structure of a synthetic linear peptide spanning helix H1 and beta-strand S2 (residues 142-166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. We found that, in contrast to many prion fragments studied earlier, this peptide (i) is highly soluble and does not aggregate up to a millimolar concentration range in aqueous medium and (ii) exhibits an intrinsic propensity to a beta-hairpin like conformation at neutral pH. This beta-propensity can be one of the internal driving forces of the molecular rearrangement responsible for the pathogenic conversion of the prion protein.  相似文献   

5.
The mycobacterial enzyme pyrazinamidase (PZase) is the target of key tuberculosis drug, pyrazinamide. Mutations in PZase cause drug resistance. Herein, three point mutations, W68G, L85P, and V155G, were investigated through over 8 µs of molecular dynamics simulations coupled with essential dynamics and binding pocket analysis at neutral (pH = 7) and acidic (pH = 4) ambient conditions. The 51-71 flap region exhibited drastic displacement leading to enlargement of binding cavity, especially at the lower pH. Accessibility of solvent to the active site of the mutant enzymes was also reduced. The protonation of key surface residues at low pH results in more contribution of these residues to structural stability and integrity of the enzyme and reduced interactions with solvent molecules, which acts as a cage, keeping the enzyme together. The observed results suggest a pattern of structural alterations due to point mutations in PZase, which is consistent with other experimental and theoretical investigations and, can be harnessed for drug design purposes.  相似文献   

6.
Valine 160 on beta-sheet-2 (S2) of mouse prion (moPrPC) has been previously identified as the most highly pH-sensitive site on moPrPC by ESR spectroscopy using site-directed spin labeling (SDSL) technique. However, no further theoretical analysis to reveal the molecular dynamics reported on the experimental ESR spectra is available. The X-band ESR spectra of R1 nitroxide spin label at V160 and four other sites are carefully analyzed over large pH and temperature ranges using a spectral simulation method based upon stochastic Liouville equation (SLE). The results clearly reveal the dynamics and ordering of the local environment of V160R1 showing that (i) molecular mobility of V160R1 on S2 gradually increases with a decrease of pH from 7.5 to 4.5; (ii) two distinctly different spectral components are simultaneously present in all spectra of V160R1 studied. The spectral components are, respectively, denoted as immobile (Im), characterized by lower molecular mobility and higher ordering, and mobile (Mb) component of high mobility and low ordering. The population ratio (Im/Mb) increases with increasing pH, while Im remains dominant in all V160R1 spectra. It suggests a more mobile and disordered dynamic molecular structure for mouse PrPC, which is very likely correlated with increased beta-sheet content at low pH, as the environment changes from neutral to acidic pH. Together with the results of the SLE-based analyses on the spectra of other sites that appear pH-insensitive, we suggest that the simultaneous presence of the spectral components for V160R1 is strongly correlated with the coexistence of multiple protein conformations in local structure of PrPC over the varied pH range. It demonstrates that the combined approach of the SDSL technique and the SLE-based analysis leads to a powerful method for unraveling the complexity of protein dynamics.  相似文献   

7.
In this study we are looking into two contradicting mutations found in prion protein (PrP) viz G127V and D178V, that are reportedly protective and pathogenic, respectively. Despite significant advances in comprehension of the role of pathogenic mutations, the role of protective mutation in amyloid fold inhibition still lacks a substantial basis. To understand the structural basis of protective mutation, molecular dynamics simulation coupled with protein-protein docking and molecular mechanics/Poisson-Boltzmann surface area analysis was used to understand the instant structural variability brought about by these mutations alone and in combination on PrP and prion-prion complex. Atomic-scale investigations successfully revealed that the binding pattern of prion-prion varies differentially in protective and pathogenic mutations with secondary structure showing distinct contrasting patterns, which could supposedly be a critical factor for differential prion behavior in protective and pathogenic mutations. Considering the reported role of an amyloid fold in prion-prion binding, the contrasting pattern has given us a lead in comprehending the role of these mutations and has been used in this study to look for small molecules that can inhibit amyloid fold for prion-prion interaction in pathogenic mutant carrying PrP.  相似文献   

8.
According to the "protein-only" hypothesis, the critical step in the pathogenesis of prion diseases is the conformational transition between the normal (PrP(C)) and pathological (PrP(Sc)) isoforms of prion protein. To gain insight into the mechanism of this transition, we have characterized the biophysical properties of the recombinant protein corresponding to residues 90-231 of the human prion protein (huPrP90-231). Incubation of the protein under acidic conditions (pH 3.6-5) in the presence of 1 M guanidine-HCl resulted in a time-dependent transition from an alpha-helical conformation to a beta-sheet structure and oligomerization of huPrP90-231 into large molecular weight aggregates. No stable monomeric beta-sheet-rich folding intermediate of the protein could be detected in the present experiments. Kinetic analysis of the data indicates that the formation of beta-sheet structure and protein oligomerization likely occur concomitantly. The beta-sheet-rich oligomers were characterized by a markedly increased resistance to proteinase K digestion and a fibrillar morphology (i.e., they had the essential physicochemical properties of PrP(Sc)). Contrary to previous suggestions, the conversion of the recombinant prion protein into a PrP(Sc)-like form could be accomplished under nonreducing conditions, without the need to disrupt the disulfide bond. Experiments in urea indicate that, in addition to acidic pH, another critical factor controlling the transition of huPrP90-231 to an oligomeric beta-sheet structure is the presence of salt.  相似文献   

9.
The most unorthodox feature of the prion disease is the existence of an abnormal infectious isoform of the prion protein, PrP(Sc). According to the "protein-only" hypothesis, PrP(Sc) propagates its abnormal conformation in an autocatalytic manner using the normal isoform, PrP(C), as a substrate. Because autocatalytic conversion is considered a key element of prion replication, in this study I tested whether in vitro conversion of recombinant PrP into abnormal isoform displays specific features of an autocatalytic process. I found that recombinant human PrP formed two distinct beta-sheet rich isoforms, the beta-oligomer and the amyloid fibrils. The kinetics of the fibrils formation measured at different pH values were consistent with a model in which the beta-oligomer was not on the kinetic pathway to the fibrillar form. As judged by electron microscopy, an acidic pH favored to the long fibrils, whereas short fibrils morphologically similar to "prion rods" were formed at neutral pH. At neutral pH the conversion to the fibrils can be seeded with small aliquots of preformed fibrils. As small as 0.001% aliquot displayed seeding activity. The conversion of human PrP was seeded with high efficacy only with the preformed fibrils of human but not mouse PrP and vice versa. These studies illustrate that in vitro conversion of recombinant PrP displays specific features of an autocatalytic process and mimics the transmission barrier of prion propagation observed in vivo. I speculate that this model can be used as a rapid assay for assessing the intrinsic propensities of prion transmission between different species.  相似文献   

10.
The thermal unfolding of full-length human recombinant alpha-helical prion protein (alpha-PrP) in neutral pH is reversible, whereas, in the presence of the osmolyte N-trimethylamine oxide (TMAO), the protein acquires a beta-sheet structure at higher temperatures and the thermal unfolding of the protein is irreversible. Lysozyme, an amyloidogenic protein similar to prion protein, regains alpha-helical structure on cooling from its thermally unfolded form in buffer and in TMAO solutions. The thermal stability of alpha-PrP decreases, whereas that of lysozyme increases in TMAO solution. Light-scattering and turbidity values indicate that beta-sheet prion protein exists as soluble oligomers that increase thioflavin T fluorescence and bind to 1-anilino 8-naphthalene sulfonic acid (ANS). The oligomers are resistant to proteinase K digestion and during incubation for long periods they form linear amyloids>5 microm long. The comparable fluorescence polarization of the tryptophan groups and their accessibility to acrylamide in alpha-PrP and oligomers indicate that the unstructured N-terminal segments of the protein, which contain the tryptophan groups, do not associate among themselves during oligomerization. Partial unfolding of alpha-helical prion protein in TMAO solution leads to its structural conversion to misfolded beta-sheet form. The formation of the misfolded prion protein oligomers and their polymerization to amyloids in TMAO are unusual, since the osmolyte generally induces denatured protein to fold to a native-like state and protects proteins from thermal denaturation and aggregation.  相似文献   

11.
Class V myosins move diverse intracellular cargoes, which attach via interaction of cargo-specific proteins to the myosin V globular tail. The globular tail of the yeast myosin V, Myo2p, contains two structural and functional subdomains. Subdomain I binds to the vacuole-specific protein, Vac17p, while subdomain II likely binds to an as yet unidentified secretory vesicle-specific protein. All functions of Myo2p require the tight association of subdomains I and II, which suggests that binding of a cargo to one subdomain may inhibit cargo-binding to a second subdomain. Thus, two types of mutations are predicted to specifically affect a subset of Myo2p cargoes: first are mutations within a cargo-specific binding region; second are mutations that mimic the inhibited conformation of one of the subdomains. Here we analyze a point mutation in subdomain I, myo2-2(G1248D), which is likely to be this latter type of mutation. myo2-2 has no effect on secretory vesicle movement. The secretory vesicle binding site is in subdomain II. However, myo2-2 is impaired in several Myo2p-related functions. While subdomains I and II of myo2-2p tightly associate, there are measurable differences in the conformation of its globular tail. Based solely on the ability to restore vacuole inheritance, a set of intragenic suppressors of myo2-2 were identified. All suppressor mutations reside in subdomain I. Moreover, subdomain I and II interactions occurred in all suppressors, demonstrating the importance of subdomain I and II association for Myo2p function. Furthermore, 3 of the 10 suppressors globally restored all tested defects in myo2-2. This large proportion of global suppressors strongly suggests that myo2-2(G1248) causes a conformational change in subdomain I that simultaneously affects multiple cargoes.  相似文献   

12.
Five point mutations were identified in unrelated Japanese Fabry disease hemizygotes: three new missense mutations, C142Y (425 G A), A156V (467 C T), and L166V (496 C G) in exon 3; one new splice site mutation at the 3 end of the consensus sequence in exon 4; one previously reported nonsense mutation, W44X (131 G A). C142Y expressed 50% of the normal enzyme protein in COS-1 cells, but catalytic activity was not detected. Both A156V and L166V expressed significant amounts of residual enzyme activity (6.7% and 9.8%) and enzyme proteins (10% each), the latter were more thermolabile at neutral pH than at acid pH, in vitro.  相似文献   

13.
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We used extensive molecular dynamics simulations of these five PrP mutants to compare their dynamics and conformations to those of the wild type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases.  相似文献   

14.
We have investigated the conformational transition and aggregation process of recombinant Syrian hamster prion protein (SHaPrP90-232) by Fourier transform infrared spectroscopy, circular dichroism spectroscopy, light scattering, and electron microscopy under equilibrium and kinetic conditions. SHaPrP90-232 showed an infrared absorbance spectrum typical of proteins with a predominant alpha-helical structure both at pH 7.0 and at pH 4.2 in the absence of guanidine hydrochloride. At pH 4.2 and destabilizing conditions (0.3-2 m guanidine hydrochloride), the secondary structure of SHaPrP90-232 was transformed to a strongly hydrogen-bonded, most probably intermolecularly arranged antiparallel beta-sheet structure as indicated by dominant amide I band components at 1620 and 1691 cm-1. Kinetic analysis of the transition process showed that the decrease in alpha-helical structures and the increase in beta-sheet structures occurred concomitantly according to a bimolecular reaction. However, the concentration dependence of the corresponding rate constant pointed to an apparent third order reaction. No beta-sheet structure was formed within the dead time (190 ms) of the infrared experiments. Light scattering measurements revealed that the structural transition of SHaPrP90-232 was accompanied by formation of oligomers, whose size was linearly dependent on protein concentration. Extrapolation to zero protein concentration yielded octamers as the smallest oligomers, which are considered as "critical oligomers." The small oligomers showed spherical and annular shapes in electron micrographs. Critical oligomers seem to play a key role during the transition and aggregation process of SHaPrP90-232. A new model for the structural transition and aggregation process of the prion protein is described.  相似文献   

15.
Human PrP (residues 91-231) expressed in Escherichia coli can adopt several conformations in solution depending on pH, redox conditions and denaturant concentration. Oxidised PrP at neutral pH, with the disulphide bond intact, is a soluble monomer which contains 47% alpha-helix and corresponds to PrPC. Denaturation studies show that this structure has a relatively small, solvent-excluded core and unfolds to an unstructured state in a single, co-operative transition with a DeltaG for folding of -5.6 kcal mol-1. The unfolding behaviour is sensitive to pH and at 4.0 or below the molecule unfolds via a stable folding intermediate. This equilibrium intermediate has a reduced helical content and aggregates over several hours. When the disulphide bond is reduced the protein adopts different conformations depending upon pH. At neutral pH or above, the reduced protein has an alpha-helical fold, which is identical to that observed for the oxidised protein. At pH 4 or below, the conformation rearranges to a fold that contains a high proportion of beta-sheet structure. In the reduced state the alpha- and beta-forms are slowly inter-convertible whereas when oxidised the protein can only adopt an alpha-conformation in free solution. The data we present here shows that the human prion protein can exist in multiple conformations some of which are known to be capable of forming fibrils. The precise conformation that human PrP adopts and the pathways for unfolding are dependent upon solvent conditions. The conditions we examined are within the range that a protein may encounter in sub-cellular compartments and may have implications for the mechanism of conversion of PrPC to PrPSc in vivo. Since the conversion of PrPC to PrPSc is accompanied by a switch in secondary structure from alpha to beta, this system provides a useful model for studying major structural rearrangements in the prion protein.  相似文献   

16.
Parchment OG  Essex JW 《Proteins》2000,38(3):327-340
Molecular dynamics computer simulations have been performed on Mouse (Mo) and Syrian Hamster (SHa) prion proteins. These proteins differ, primarily, in that the SHa form incorporates additional residues at the C-terminus and also includes a segment of the unstructured N-terminal region that is required for infectivity. The 1-ns simulations have been analyzed by using a combination of dynamical cross-correlation maps, residue-residue contact plots, digital filtering, and residue-based root-mean-square deviations. The results show that the extra residues present in the SHa form at the C- and N-termini produce changes in the stability of key regions of the protein. The loop region between strand S2 and helix B that contains part of the proposed discontinuous binding site for the chaperone, protein X, is found to be more stable in SHa than in the Mo protein; these results are consistent with the NMR data of James et al. (James et al. Proc Natl Acad Sci USA 1997;94:10086-10091). In addition, a degree of flexibility within the region between and including strand S1 and helix A is also shown in SHa, which is not present in the Mo form; the cross-correlation maps suggest that this is a consequence of the additional unstructured N-terminal region. Furthermore, the extra residues in the N-terminal region of SHa are found to form a beta-bridge with the beta-sheet, within which critical point mutations associated with prion diseases lie. The implications of these results for the conformational interconversion pathway of the prion protein are discussed.  相似文献   

17.
The N-terminal 'unstructured' region of the human prion protein [PrP((90-231))] is believed to play a role in its aggregation because mutations in this region are associated with seeding-independent deposition disorders like Gerstmann-Straussler-Scheinker disease (GSS). One way of examining the effects of such mutations is to search combinatorially derived libraries for sequence variants showing a propensity to aggregate and/or the ability to interact with prion molecules folded into a beta-sheet-based conformation (i.e., beta-PrP or PrP(Sc)). We created a library of 1.8x10(7) variants randomized between positions 101 and 112, displayed it on filamentous bacteriophage, and 'spiked' it with a approximately 25% population of phages-bearing wild-type prion (wt-PrP). Screening was performed through four rounds of biopanning and amplification against immobilized beta-PrP, and yielded three beta-PrP-binding populations: wt-PrP (26% representation) and two non-wt-PrP variants ( approximately 10% and approximately 64% representation, respectively). The remarkable enrichment of one non-wt-PrP variant (MutPrP) incorporating residues KPSKPKTNMKHM in place of KGVLTWFSPLWQ, despite its initial representation at a 5 million-fold lower level than wt-PrP, caused us to produce it and discover: (i) that it readily aggregates into thioflavin-T-binding amyloids between pH 6.0 and 9.0, (ii) that it adopts a soluble beta-sheet based monomeric structure at pH 10.0, (iii) that it is less thermally stable and more compact than wt-PrP, and (iv) that it displays significantly greater resistance to proteolysis than wt-PrP. Our results suggest that sequence variations in the 101-112 region can indeed predispose the prion for aggregation.  相似文献   

18.
Prion diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str?ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches to treat all these prion diseases. In 2008, canine mammals including dogs (canis familials) were the first time academically reported to be resistant to prion diseases (Vaccine 26: 2601-2614 (2008)). Thus, it is very worth studying the molecular structures of dog prion protein to obtain insights into the immunity of dogs to prion diseases. This paper studies the molecular structural dynamics of wild-type dog prion protein. The comparison analyses with rabbit prion protein show that the dog prion protein has stable molecular structures whether under neutral or low pH environments. We also find that the salt bridges such as D177-R163 contribute to the structural stability of wild-type rabbit prion protein under neutral pH environment.  相似文献   

19.
DeMarco ML  Daggett V 《Biochemistry》2007,46(11):3045-3054
Conformational changes in the prion protein cause transmissible spongiform encephalopathies, also referred to as prion diseases. In its native state, the prion protein is innocuous (PrPC), but it can misfold into a neurotoxic and infectious isoform (PrPSc). The full-length cellular form of the prion protein consists of residues 23-230, with over half of the sequence belonging to the unstructured N-terminal domain and the remaining residues forming a small globular domain. During misfolding and aggregation, portions of both the structured and unstructured domains are incorporated into the aggregates. After limited proteolysis by proteinase K, the most abundant fragment from brain-derived prion fibrils is a 141-residue fragment composed of residues 90-230. Here we describe simulations of this fragment of the human prion protein at low pH, which triggers misfolding, and at neutral pH as a control. The simulations, in agreement with experiment, show that this biologically and pathologically relevant prion construct is stable and native-like at neutral pH. In contrast, at low pH the prion protein is destabilized via disruption of critical long-range salt bridges. In one of the low pH simulations this destabilization resulted in a conformational transition to a PrPSc-like isoform consistent with our previous simulations of a smaller construct.  相似文献   

20.
Molecular dynamics calculations demonstrated the conformational change in the prion protein due to Ala(117)-->Val mutation, which is related to Gerstmann-Str?ussler-Sheinker disease, one of the familial prion diseases. Three kinds of model structures of human and mouse prion proteins were examined: (model 1) nuclear magnetic resonance structures of human prion protein HuPrP (125-228) and mouse prion protein MoPrP (124-224), each having a globular domain consisting of three alpha-helices and an antiparallel beta-sheet; (model 2) extra peptides including Ala(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1; and (model 3) extra peptides including Val(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1. The results of molecular dynamics calculations indicated that the globular domains of models 1 and 2 were stable and that the extra peptide in model 2 tended to form a new alpha-helix. On the other hand, the globular domain of model 3 was unstable, and the beta-sheet region increased especially in HuPrP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号