首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

2.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

3.
Forest harvesting alters the cycling of nitrogen (N) within temperate forest systems in a manner that may influence atmospheric nitrous oxide (N2O) concentrations. This paper investigates, over a single growing season within the Acadian Forest region of Atlantic Canada, soil N2O fluxes across a clearcut harvest red spruce forest chronosequence that includes an old growth reference site (>125 years). A pulse of soil N2O at ~1–2 years was observed after clearcut harvesting, followed by an exponential decay to a baseline level within one to two decades after the harvesting event. No significant differences between fluxes from the forest sites >20 years of age and the reference old growth site (>125 years) were observed. Soils within the chronosequence acted as both sources and sinks for N2O through the growing season. Low soil N availability was identified as the likely factor limiting soil N2O flux responses to changes in soil temperature and moisture in situ at most sites. This was confirmed by controlled laboratory experiments that measured soil N2O flux responses to moisture, temperature and N amendments. Without N amendments, soils act as an elevated sink for N2O under increased temperature. However, when soil N was not limiting, N2O flux responded primarily to moisture. Overall, the study suggests that moist temperate forest soils that are N-limited can act as a transient source of N2O following clearcut harvesting during the growing season, and that the decrease in the release of N2O from soils following harvesting follows an exponential pattern.  相似文献   

4.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

5.
Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta‐analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2O and CH4 effluxes were related to the changes in soil nitrate and soil aeration‐related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.  相似文献   

6.
Soils provide the largest terrestrial carbon store, the largest atmospheric CO2 source, the largest terrestrial N2O source and the largest terrestrial CH4 sink, as mediated through root and soil microbial processes. A change in land use or management can alter these soil processes such that net greenhouse gas exchange may increase or decrease. We measured soil–atmosphere exchange of CO2, N2O and CH4 in four adjacent land‐use systems (native eucalypt woodland, clover‐grass pasture, Pinus radiata and Eucalyptus globulus plantation) for short, but continuous, periods between October 2005 and June 2006 using an automated trace gas measurement system near Albany in southwest Western Australia. Mean N2O emission in the pasture was 26.6 μg N m−2 h−1, significantly greater than in the natural and managed forests (< 2.0 μg N m−2 h−1). N2O emission from pasture soil increased after rainfall events (up to 100 μg N m−2 h−1) and as soil water content increased into winter, whereas no soil water response was detected in the forest systems. Gross nitrification through 15N isotope dilution in all land‐use systems was small at water holding capacity < 30%, and under optimum soil water conditions gross nitrification ranged between < 0.1 and 1.0 mg N kg−1 h−1, being least in the native woodland/eucalypt plantation < pine plantation < pasture. Forest soils were a constant CH4 sink, up to −20 μg C m−2 h−1 in the native woodland. Pasture soil was an occasional CH4 source, but weak CH4 sink overall (−3 μg C m−2 h−1). There were no strong correlations (R < 0.4) between CH4 flux and soil moisture or temperature. Soil CO2 emissions (35–55 mg C m−2 h−1) correlated with soil water content (R < 0.5) in all but the E. globulus plantation. Soil N2O emissions from improved pastures can be considerable and comparable with intensively managed, irrigated and fertilised dairy pastures. In all land uses, soil N2O emissions exceeded soil CH4 uptake on a carbon dioxide equivalent basis. Overall, afforestation of improved pastures (i) decreases soil N2O emissions and (ii) increases soil CH4 uptake.  相似文献   

7.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   

8.
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4) oxidation in well‐aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in‐situ soil–atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand ‘maturity’ (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0–0.05, 0.05–0.10, 0.10–0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south‐eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks.  相似文献   

9.
There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha−1 year−1) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2O emissions (in kg N2O ha−1 year−1) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above −25 cm. In contrast, annual N2O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L−1 beyond which TDN seemingly ceased to be limiting for N2O production. The new emissions data for CH4 and N2O presented here should help to develop more robust country level ‘emission factors’ for the quantification of national GHG inventory reporting. The impact of TDN on N2O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.  相似文献   

10.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

11.
梁东哲  赵雨森  曹杰  辛颖 《生态学报》2019,39(21):7950-7959
为研究大兴安岭重度火烧迹地在不同恢复方式下林地土壤CO2、CH4和N2O排放特征及其影响因素,采用静态箱/气相色谱法,在2017年生长季(6月-9月)对3种恢复方式(人工更新、天然更新和人工促进天然更新)林地土壤温室气体CO2、CH4、N2O通量进行了原位观测。研究结果表明:(1)3种恢复方式林地土壤在生长季均为大气CO2、N2O的源,CH4的汇;生长季林地土壤CO2排放通量大小关系为人工促进天然更新((634.40±246.52)mg m-2 h-1) > 人工更新((603.63±213.22)mg m-2 h-1) > 天然更新((575.81±244.12)mg m-2 h-1),3种恢复方式间无显著差异;人工更新林地土壤CH4吸收通量显著高于人工促进天然更新;天然更新林地土壤N2O排放通量显著高于其他两种恢复方式。(2)土壤温度是影响3种恢复方式林地土壤温室气体通量的关键因素;土壤水分仅对人工更新林地土壤N2O通量有极显著影响(P < 0.01);3种恢复方式林地土壤CO2通量与大气湿度具有极显著的响应(P < 0.01);土壤pH仅与天然更新林地土壤CO2通量显著相关(P < 0.05);土壤全氮含量仅与人工促进天然更新林地土壤CH4通量显著相关(P < 0.05)。(3)基于100年尺度,由3种温室气体计算全球增温潜势得出,人工促进天然更新(1.83×104 kg CO2/hm2) > 人工更新(1.74×104 kg CO2/hm2) > 天然更新(1.67×104 kg CO2/hm2)。(4)阿木尔地区林地土壤年生长季CO2和N2O排放量为8.85×106 t和1.88×102 t,CH4吸收量为1.05×103 t。  相似文献   

12.
李君怡  席毅  赵俊福 《生态学报》2022,42(12):4978-4987
森林土壤是一个重要的大气甲烷的汇。然而,相较于寒带和温带,在热带尤其是东南亚地区,森林土壤甲烷通量的观测较少,这限制了目前对热带森林土壤甲烷通量与环境因子之间关系的认识,也给热带森林土壤甲烷汇的估算带来了一定的不确定性。在中国海南省吊罗山国家森林公园的热带森林土壤,采用激光光谱法测量了2016年9月至2018年9月逐月的土壤甲烷通量,并分析了其与周围环境因子的关系。结果表明:研究区土壤是甲烷的汇,山顶样地的年平均吸收量为0.95 kg CH4-C hm-2 a-1,山脚样地的年平均吸收量为1.93 kg CH4-C hm-2 a-1。干季(11月—次年4月)的甲烷吸收通量明显高于湿季(5—10月),占到全年甲烷吸收的68%。山顶样地年平均土壤湿度为19.2%,年内的波动较小(2.8%)。而山脚样地的年平均湿度相对较低,为12.7%,且年内波动大(5.4%)。土壤湿度是控制甲烷吸收最主要的环境因子,可以解释月际甲烷吸收变化的76%,甲烷吸收通量与土壤温度的相...  相似文献   

13.
The magnitude of greenhouse gas (GHG) flux rates may be important in wet and intermediate wet forest soils, but published estimates are scarce. We studied the surface exchange of methane (CH4) and nitrous oxide (N2O) from soil along toposequences in two temperate deciduous forest catchments: Strødam and Vestskoven. The soil water regime ranged from fully saturated to aerated within the catchments. At Strødam the largest mean flux rates of N2O (15 μg N2O-N m?2 h?1) were measured at volumetric soil water contents (SWC) between 40 and 60% and associated with low soil pH compared to smaller mean flux rates of 0-5 μg N2O-N m?2 h?1 for drier (SWC < 40%) and wet conditions (SWC > 80%). At Vestskoven the same response of N2O to soil water content was observed. Average CH4 flux rates were highly variable along the toposequences (?17 to 536 μg CH4-C m?2 h?1) but emissions were only observed above soil water content of 45%. Scaled flux rates of both GHGs to catchment level resulted in emission of 322 and 211 kg CO2-equivalents ha?1 year?1 for Strødam and Vestskoven, respectively, with N2O contributing the most at both sites. Although the wet and intermediate wet forest soils occupied less than half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small proportions of wet soils contributes substantially to the emissions of N2O and CH4.  相似文献   

14.
Biochar has been widely researched as an important technology for climate smart agriculture, yet work is still necessary to identify the magnitude of potential greenhouse gas (GHG) mitigation and mechanisms involved. This study measured slow‐pyrolysis wood‐derived biochar's impact on GHG efflux, mineral N dynamics, and soil organic C in a series of two incubations across fertilized and unfertilized agricultural soils and soil moisture regimes. This research explored the magnitude of biochar's full GHG mitigation potential and drivers of such impacts. Results of this incubation indicate slow‐pyrolysis wood‐derived biochar has potential to provide annual emission reductions of 0.58–1.72 Mg CO2‐eq ha?1 at a 25 Mg ha?1 biochar application rate. The greatest GHG mitigation potential was from C sequestration and nitrous oxide (N2O) reduction in mineral N fertilized soils, with minimal impacts on N2O emissions in unfertilized soils, carbon dioxide (CO2) emissions, and methane (CH4) uptake. Analysis of mineral N dynamics in the bulk soil and on biochar isolates indicated that neither biochar impacts on net mineralization and nitrification nor retention of ammonium () on biochar isolates could explain biochar's N2O reduction. Instead, biochar amendments exhibited consistent N2O emission reductions relative to the N2O emission in the control soil regardless of soil type and fertilization. Results across a soil moisture gradient suggest that woody biochar may aerate soils shifting redox conditions and subsequent N2O production. Understanding the magnitude of biochar's GHG reduction potential and the mechanisms driving these effects can help inform biochar modeling efforts, explain field results and identify agricultural applications that maximize biochar's full GHG mitigation potential.  相似文献   

15.
Tropical forests on upland soils are assumed to be a methane (CH4) sink and a weak source of nitrous oxide (N2O), but studies of wetland forests have demonstrated that tree stems can be a substantial source of CH4, and recent evidence from temperate woodlands suggests that tree stems can also emit N2O. Here, we measured CH4 and N2O fluxes from the soil and from tree stems in a semi‐evergreen tropical forest on upland soil. To examine the influence of seasonality, soil abiotic conditions and substrate availability (litter inputs) on trace greenhouse gas (GHG) fluxes, we conducted our study during the transition from the dry to the wet season in a long‐term litter manipulation experiment in Panama, Central America. Trace GHG fluxes were measured from individual stem bases of two common tree species and from soils beneath the same trees. Soil CH4 fluxes varied from uptake in the dry season to minor emissions in the wet season. Soil N2O fluxes were negligible during the dry season but increased markedly after the start of the wet season. By contrast, tree stem bases emitted CH4 and N2O throughout the study. Although we observed no clear effect of litter manipulation on trace GHG fluxes, tree species and litter treatments interacted to influence CH4 fluxes from stems and N2O fluxes from stems and soil, indicating complex relationships between tree species traits and decomposition processes that can influence trace GHG dynamics. Collectively, our results show that tropical trees can act as conduits for trace GHGs that most likely originate from deeper soil horizons, even when they are growing on upland soils. Coupled with the finding that the soils may be a weaker sink for CH4 than previously thought, our research highlights the need to reappraise trace gas budgets in tropical forests.  相似文献   

16.
CO2 and CH4 fluxes were monitored over 4 years in a range of taiga forests along the Tanana River in interior Alaska. Floodplain alder and white spruce sites and upland birch/aspen and white spruce sites were examined. Each site had control, fertilized, and sawdust amended plots; flux measurements began during the second treatment year. CO2 emissions decreased with successional age across the sites (alder, birch/aspen, and white spruce, in order of succession) regardless of landscape position. Although CO2 fluxes showed an exponential relationship with soil temperature, the response of CO2 production to moisture fit an asymptotic model. Of the manipulations, only N fertilization had an effect on CO2 flux, decreasing flux in the floodplain sites but increasing it in the birch/aspen site. Landscape position was the best predictor of CH4 flux. The two upland sites consumed CH4 at similar rates (approximately 0.5 mg C m−2 d−1), whereas the floodplain sites had lower consumption rates (0–0.3 mg C m−2 d−1). N fertilization and sawdust both inhibited CH4 consumption in the upland birch/aspen and floodplain spruce sites but not in the upland spruce site. The biological processes driving CO2 fluxes were sensitive to temperature, moisture, and vegetation, whereas CH4 fluxes were sensitive primarily to landscape position and biogeochemical disturbances. Hence, climate change effects on C-gas flux in taiga forest soils will depend on the relationship between soil temperature and moisture and the concomitant changes in soil nutrient pools and cycles. Received 10 March 1998; accepted 29 December 1999.  相似文献   

17.
Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2O) and methane (CH4) fluxes, (2) quantify direct N2O emission factors (EFd) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2O emissions by 153%, to 3.0 kg N ha−1 year−1, while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha−1 year−1. The global mean annual N2O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2O emission by 0.46 Tg N2O-N year−1 and decreased soil CH4 uptake by 0.58 Tg CH4-C year−1. Urbanization driven changes in soil N2O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2O emissions and reduces the role of soils as a sink for atmospheric CH4. These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.  相似文献   

18.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

19.
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha?1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of ?5.28 (±0.67) Mg CO2eq ha?1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha?1 of N2O and of 3.53 (±0.85) Mg CO2eq ha?1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.  相似文献   

20.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号