首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aim of the present study was to identify water channel(s) which are expressed specifically in the growth zone of grass leaves and may facilitate growth-associated water uptake into cells. Previously, a gene had been described (HvEmip) which encodes a membrane intrinsic protein (MIP) and which is particularly expressed in the base 1 cm of barley primary leaves. The functionality of the encoding protein was not known. In the present study on leaf 3 of barley (Hordeum vulgare L.), a clone was isolated, termed HvPIP1;6, which has 99% amino acid sequence identity to HvEmip and belongs to the family of plasma membrane intrinsic proteins (PIPs). Expression of HvPIP1;6 was highest in the elongation zone, where it accounted for >85% of expression of known barley PIP1s. Within the elongation zone, faster grower regions showed higher expression than slower growing regions. Expression of HvPIP1;6 was confined to the epidermis, with some expression in neighboring mesophyll cells. Expression of HvPIP1;6 in Xenopus laevis oocytes increased osmotic water permeability 4- to 6-fold. Water channel activity was inhibited by pre-incubation of oocytes with 50 microM HgCl(2) and increased following incubation with the phosphatase inhibitor okadaic acid or the plant hormone ABA. Plasma membrane preparations were analyzed by Western blots using an antibody that recognized PIP1s. Levels of PIP1s were highest in the elongation and adjacent non-elongation zone. The developmental expression profile of HvPIP2;1, the only known barley water channel belonging to the PIP2 subgroup, was opposite to that of HvPIP1;6.  相似文献   

5.
Many membrane proteins exist and function as oligomers or protein complexes. Routine analytical methods involve extraction and solubilization of the proteins with detergents, which could disturb their actual oligomeric state. AcrB is a trimeric inner membrane multidrug transporter in E. coli. In previous studies, we created a mutant AcrBP223G, which behaves like a monomer when extracted from the cell membrane. However, the actual oligomeric state of AcrBP223G in cell membranes remained unclear, which complicated the interpretation of the mechanism by which the mutation affects function. Here we used several complementary methods to determine the oligomeric state of AcrBP223G in E. coli cell membranes. Two sets of quantitative fluorescent techniques were exploited. For these, we created fluorescent tagged AcrB, AcrB-CFP and AcrB-YPet. Fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) were employed to characterize independently the efficiency of energy transfer between co-expressed AcrB-CFP and AcrB-YPet, and the diffusion coefficient of AcrB-YPet and AcrBP223G-YPet in live E. coli cells. Second, we introduced Cys pairs at the inter-subunit interface and used controlled oxidation to probe inter-subunit distances. The results from all studies converge on the conclusion that AcrBP223G exists as a trimer in cell membranes, which dissociates during the purification steps. The small change in trimer affinity and structure leads to a significant loss of AcrB activity. In addition, throughout this study we developed protocols and established benchmark values, useful for further studies on membrane protein associations in cell membranes.  相似文献   

6.
7.
8.
9.
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are negative regulators of MAPKs. In dicotyledons such as Arabidopsis and tobacco, MKPs have been shown to play pivotal roles in abiotic stress responses, hormone responses and microtubule organization. However, little is known about the role of MKPs in monocotyledons such as rice. Database searches identified five putative MKPs in rice. We investigated their expression in response to wounding, and found that the expression of OsMKP1 is rapidly induced by wounding. In this study, we functionally characterized the involvement of OsMKP1 in wound responses. The deduced amino acid sequence of OsMKP1 shows strong similarity to Arabidopsis AtMKP1 and tobacco NtMKP1. Moreover, OsMKP1 bound calmodulin in a manner similar to NtMKP1. To determine the biological function of OsMKP1, we obtained osmkp1, a loss-of-function mutant, in which retrotransposon Tos17 was inserted in the second exon of OsMKP1. Unlike the Arabidopsis atmkp1 loss-of-function mutant, which shows no abnormal phenotype without stimuli, osmkp1 showed a semi-dwarf phenotype. Exogenous supply of neither gibberellin nor brassinosteroid complemented the semi-dwarf phenotype of osmkp1. Activities of two stress-responsive MAPKs, OsMPK3 and OsMPK6, in osmkp1 were higher than those in the wild type both before and after wounding. Microarray analysis identified 13 up-regulated and eight down-regulated genes in osmkp1. Among the up-regulated genes, the expression of five genes showed clear responses to wounding, indicating that wound responses are constitutively activated in osmkp1. These results suggest that OsMKP1 is involved in the negative regulation of rice wound responses.  相似文献   

10.
11.
The unicellular green alga Chlamydomonas reinhardtii can acclimate to a broad range of environmental CO(2) concentrations. We observed that the cells synthesized a specific 43 kDa protein, H43, in the periplasmic space under photoautotrophic high-CO(2) conditions. Under low-CO(2) conditions, H43 disappeared. However, H43 mRNA expression was observed even under heterotrophic low-CO(2) conditions when the cells were grown with 17.4 mM acetate in darkness. When the cells were treated with 4,4'-dithiocyanatostilbene-2,2'-disulfonate (DIDS) and mersalyl to modify cell surface proteins, H43 mRNA expression was strongly affected under both heterotrophic and photoautotrophic conditions. The H43 induction pattern in a mitochondrial respiration-deficient mutant dum-1 that lacks cytochrome c oxidase was the same, but the level was much lower than that in the wild type. Even under illumination, the dissolved CO(2) concentration in the culture rapidly increased slightly following the addition of acetate and dramatically increased even further by the inhibition of photosynthesis with DCMU. Radiotracer experiments with [U-(14)C]acetate revealed that (14)CO(2) release from cells was greater in darkness than in the light due to the great stimulation of internal CO(2) evolution, resulting in an increase in external CO(2) concentration. Strong light inhibited H43 induction and DCMU promoted the induction under photoheterotrophic low-CO(2) conditions. The results demonstrate that H43 is strictly regulated by a concentration of CO(2) resulting from respiration and photosynthesis. Our results suggest that Chlamydomonas induces high-CO(2)-responsive protein H43 by sensing the concentration of ambient CO(2) with the contribution of cell surface protein.  相似文献   

12.
PINOID, a serine threonine protein kinase in Arabidopsis, controls auxin distribution through a positive control of subcellular localization of PIN auxin efflux carriers. Compared with the rapid progress in understanding mechanisms of auxin action in dicot species, little is known about auxin action in monocot species. Here, we describe the identification and characterization of OsPID, the PINOID ortholog of rice. Phylogenetic analysis showed that the rice genome contains a single PID ortholog, OsPID. Constitutive overexpression of OsPID caused a variety of abnormalities, such as delay of adventitious root development, curled growth of shoots and agravitropism. Abnormalities observed in the plants that overexpress OsPID could be phenocopied by treatment with an inhibitor of active polar transport of auxin, indicating that OsPID could be involved in the control of polar auxin transport in rice. Analysis of OsPID mRNA distribution showed a complex pattern in shoot meristems, indicating that it probably plays a role in the pattern formation and organogenesis in the rice shoot.  相似文献   

13.
In Arabidopsis thaliana, the flowering time is regulated through the circadian clock that measures day-length and modulates the photoperiodic CO-FT output pathway in accordance with the external coincidence model. Nevertheless, the genetic linkages between the major clock-associated TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway are less clear. By employing a set of mutants including an extremely early flowering toc1 cca1 lhy triple mutant, here we showed that CCA1 and LHY act redundantly as negative regulators of the photoperiodic flowering pathway. The partly redundant CCA1/LHY functions are largely, but not absolutely, dependent on the upstream TOC1 gene that serves as an activator. The results of examination with reference to the expression profiles of CO and FT in the mutants indicated that this clock circuitry is indeed linked to the CO-FT output pathway, if not exclusively. For this linkage, the phase control of certain flowering-associated genes, GI, CDF1 and FKF1, appears to be crucial. Furthermore, the genetic linkage between TOC1 and CCA1/LHY is compatible with the negative and positive feedback loop, which is currently believed to be a core of the circadian clock. The results of this study suggested that the circadian clock might open an exit for a photoperiodic output pathway during the daytime. In the context of the current clock model, these results will be discussed in connection with the previous finding that the same clock might open an exit for the early photomorphogenic output pathway during the night-time.  相似文献   

14.
The plastid gene psbC encodes the CP43 subunit of PSII. Most psbC mRNAs of many organisms possess two possible initiation codons, AUG and GUG, and their coding regions are generally annotated from the upstream AUG. Using a chloroplast in vitro translation system, we show here that translation of the tobacco plastid psbC mRNA initiates from the GUG. This mRNA possesses a long Shine-Dalgarno (SD)-like sequence, GAGGAGGU, nine nucleotides upstream of the GUG. Point mutations in this sequence abolished translation, suggesting that a strong interaction between this extended SD-like sequence and the 3' end of 16S rRNA facilitates translation initiation from the GUG.  相似文献   

15.
Disintegration of the vacuolar membrane (VM) has been proposed to be a crucial event in various types of programmed cell death (PCD) in plants. However, its regulatory mechanisms are mostly unknown. To obtain new insights on the regulation of VM disintegration during hypersensitive cell death, we investigated the structural dynamics and permeability of the VM, as well as cytoskeletal reorganization during PCD in tobacco BY-2 cells induced by a proteinaceous elicitor, cryptogein. From sequential observations, we have identified the following remarkable events during PCD. Stage 1: bulb-like VM structures appear within the vacuolar lumen and the cortical microtubules are disrupted, while the cortical actin microfilaments are bundled. Simultaneously, transvacuolar strands including endoplasmic microtubules and actin microfilaments are gradually disrupted and the nucleus moves from the center to the periphery of the cell. Stage 2: cortical actin microfilament bundles and complex bulb-like VM structures disappear. The structure of the large central vacuole becomes simpler, and small spherical vacuoles appear. Stage 3: the VM is disintegrated and a fluorescent dye, BCECF, leaks out of the vacuoles just prior to PCD. Application of an actin polymerization inhibitor facilitates both the disappearance of bulb-like vacuolar membrane structures and induction of cell death. These results suggest that the elicitor-induced reorganization of actin microfilaments is involved in the regulation of hypersensitive cell death via modification of the vacuolar structure to induce VM disintegration.  相似文献   

16.
Pollen represents an important nitrogen sink in flowers to ensurepollen viability. Since pollen cells are symplasmically isolatedduring maturation and germination, membrane transporters arerequired for nitrogen import across the pollen plasma membrane.This study describes the characterization of the ammonium transporterAtAMT1;4, a so far uncharacterized member of the ArabidopsisAMT1 family, which is suggested to be involved in transportingammonium into pollen. The AtAMT1;4 gene encodes a functionalammonium transporter when heterologously expressed in yeastor when overexpressed in Arabidopsis roots. Concentration-dependentanalysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformedplants allowed characterization of AtAMT1;4 as a high-affinitytransporter with a Km of 17 µM. RNA and protein gel blotanalysis showed expression of AtAMT1;4 in flowers, and promoter–genefusions to the green fluorescent protein (GFP) further definedits exclusive expression in pollen grains and pollen tubes.The AtAMT1;4 protein appeared to be localized to the plasmamembrane as indicated by protein gel blot analysis of plasmamembrane-enriched membrane fractions and by visualization ofGFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes.However, no phenotype related to pollen function could be observedin a transposon-tagged line, in which AtAMT1;4 expression isdisrupted. These results suggest that AtAMT1;4 mediates ammoniumuptake across the plasma membrane of pollen to contribute tonitrogen nutrition of pollen via ammonium uptake or retrieval.  相似文献   

17.
Electrical characteristics of the node were analyzed in comparisonwith those of the flank of the internodal cell in Chara corallina.The dependence of the membrane potential of the node on pH andK+ concentration was almost the same as that of the flank. Inthe flank, the increase in the Ca2+ concentration stopped thedepolarization in the presence of 100 mM KCl. In the node, however,Ca2+ could not stop the depolarization induced by 100 mM KCl.It has been reported that the node has a function to tranducethe signal of osmotic shock into a transient depolarization.In combination with osmotic shock, 10 mM K+ could induce a long-lastingdepolarization of the node. These electrical characteristicsof the node were suggested to be responsible for the electricalresponse to wounding in Characeae.  相似文献   

18.
The hydroxyl radical produced in the apoplast has been demonstratedto facilitate cell wall loosening during cell elongation. Cellwall-bound peroxidases (PODs) have been implicated in hydroxylradical formation. For this mechanism, the apoplast or cellwalls should contain the electron donors for (i) H2O2 formationfrom dioxygen; and (ii) the POD-catalyzed reduction of H2O2to the hydroxyl radical. The aim of the work was to identifythe electron donors in these reactions. In this report, hydroxylradical (·OH) generation in the cell wall isolated frompea roots was detected in the absence of any exogenous reductants,suggesting that the plant cell wall possesses the capacity togenerate ·OH in situ. Distinct POD and Mn-superoxidedismutase (Mn-SOD) isoforms different from other cellular isoformswere shown by native gel electropho-resis to be preferably boundto the cell walls. Electron paramagnetic resonance (EPR) spectroscopyof cell wall isolates containing the spin-trapping reagent,5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO),was used for detection of and differentiation between ·OHand the superoxide radical (O2·). The data obtainedusing POD inhibitors confirmed that tightly bound cell wallPODs are involved in DEPMPO/OH adduct formation. A decreasein DEPMPO/OH adduct formation in the presence of H2O2 scavengersdemonstrated that this hydroxyl radical was derived from H2O2.During the generation of ·OH, the concentration of quinhydronestructures (as detected by EPR spectroscopy) increased, suggestingthat the H2O2 required for the formation of ·OH in isolatedcell walls is produced during the reduction of O2 by hydroxycinnamicacids. Cell wall isolates in which the proteins have been denaturated(including the endogenous POD and SOD) did not produce ·OH.Addition of exogenous H2O2 again induced the production of ·OH,and these were shown to originate from the Fenton reaction withtightly bound metal ions. However, the appearance of the DEPMPO/OOHadduct could also be observed, due to the production of O2·when endogenous SOD has been inactivated. Also, O2·was converted to ·OH in an in vitro horseradish peroxidase(HRP)/H2O2 system to which exogenous SOD has been added. Takentogether with the discovery of the cell wall-bound Mn-SOD isoform,these results support the role of such a cell wall-bound SODin the formation of ·OH jointly with the cell wall-boundPOD. According to the above findings, it seems that the hydroxycinnamicacids from the cell wall, acting as reductants, contribute tothe formation of H2O2 in the presence of O2 in an autocatalyticmanner, and that POD and Mn-SOD coupled together generate ·OHfrom such H2O2.  相似文献   

19.
Sexual dimorphism is controlled by genes on the Y chromosome in the dioecious plant Silene latifolia. K034 is the first mutant with female flowers and asexual flowers in one individual. Its stamens are suppressed completely, and its gynoecium exhibits two suppression patterns. One gynoecium resembles a thin rod, as in wild-type males (asexual flower); the other is imperfectly suppressed, having 1-3 carpels (female-like flower). The ratio of these patterns was 9 : 1. To exclude the possibility of chimerism in K034, we crossed a female-like flower of K034 with a wild-type male. Progeny obtained from this crossing had asexual and female-like flowers in one individual. This two-flower-type phenotype was inherited without separating. To examine the identity of flower organs in K034, we analyzed the development of asexual and female-like flowers using scanning electron microscopy and in situ hybridization with SLM1 and SLM2 (orthologs of AGAMOUS and PISTILLATA, respectively) as probes. Mitotic spreads of root tip chromosomes from hairy root cultures showed that K034 had 25 chromosomes. Fluorescent in situ hybridization analysis, using a subtelomeric repetitive sequence (KpnI subfamily) as a probe, indicated that K034 possessed two X chromosomes and one Y chromosome (Y(d)), of which Y(d) had been rearranged to lose the pseudoautosomal region (PAR). PCR analysis using Y-specific sequence-tagged site (STS) markers clarified that Y(d) of K034 had two other deletions in gynoecium-suppressing and stamen-promoting regions. It is reasonable to suggest that these sex chromosomal abnormalities resulted in two abnormal sexual phenotypes: the asexual and imperfect female (female-like) flowers in K034.  相似文献   

20.
Ca2+-signaling in downstream effectors is supported by many kinds of Ca2+-binding proteins, which function as a signal mediator and a Ca2+-buffering protein. We found in Arabidopsis thaliana a new type of Ca2+-binding protein, CCaP1, which consists of 152 amino acid residues, and binds (45)Ca2+ even in the presence of a high concentration of Mg2+. We found two other proteins with similar motifs, CCaP2 and CCaP3. These three proteins had no organelle localization signal and their green fluorescent protein (GFP) fusions were detected in the cytosol. Real-time PCR and histochemical analysis of promoter-beta-glucuronidase fusions revealed that CCaP1 was predominantly expressed in petioles while CCaP2 was expressed in roots. CCaP3 was hardly expressed. Expression of CCaP1 and CCaP2 was enhanced in darkness and became maximal after 24 h. Immunoblotting revealed petiole-specific accumulation of CCaP1. Expression of CCaP1 and CCaP2 was suppressed by a high concentration of Ca2+ and other metal ions. Deletion of sucrose from the medium markedly increased the mRNA levels of CCaP1 and CCaP2 within 2 h. Gibberellic acid enhanced the expression of CCaP1 and CCaP2 by 5- and 2.5-fold, respectively, after 6 h. CCaP1 and CCaP2 were suppressed in the petiole and the root, respectively, by light and the product of photosynthesis (sucrose) or both. These results suggest that CCaP1 functions as a mediator in response to continuous dark or gibberellic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号