首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of workers have reported that avian muscular dystrophy causes alterations in the levels of certain enzyme activities in "fast-twitch" muscle fibers but has little effect on enzyme activities in "slow-twitch" muscle fibers. In the present work, the effects of this disease on the content and relative rates of synthesis of a number of glycolytic enzymes and the skeletal muscle-specific MM isoenzyme of creatine kinase in chicken muscles was investigated. It was shown that (i) the approximate 50% reductions in steady-state concentrations of three glycolytic enzymes (aldolase, enolase, and glyceraldehyde-3-P dehydrogenase) in dystrophic breast (fast-twitch) muscle result predominantly from decreases in relative rates of synthesis, rather than accelerations in relative rates of degradation, of these proteins in the diseased tissue; (ii) in contrast to the situation with the glycolytic enzymes, muscular dystrophy has only minor effects (25% or less) on the content and relative rate of synthesis of MM creatine kinase in breast muscle fibers; (iii) the muscular dystrophy-associated alterations in content and synthesis of the glycolytic enzymes in breast muscle fibers become apparent only during postembryonic maturation of this tissue; and (iv) as expected, muscular dystrophy has no significant effect on the content or relative rates of synthesis of glycolytic enzymes in slow-twitch lateral adductor muscles of the chicken. These results are discussed in terms of the apparent similarities between the effects of muscular dystrophy and surgical denervation on the protein synthetic programs expressed by mature fast-twitch muscle fibers.  相似文献   

2.
C-Proteins in developing, denervated, and dystrophic chicken skeletal muscles were examined by means of two-dimensional (2D) gel electrophoresis in combination with immunoblotting. In this analysis, the electrophoresis system which was devised by Hirabayashi (Anal. Biochem. 117, 443-451, 1981) provided excellent resolution; three C-protein variants, one fast-type (Cf) and two slow-types (CS3 and CS4) with different Mrs and pIs, were distinguished on a 2D gel. In the neonatal breast muscle, both Cf and CS3 were detected, but during postnatal development, CS3 disappeared from this muscle and Cf became only the C-protein isoform in the adult muscle. In posterior latissimus dorsi (PLD) muscle, both Cf and CS3 were similarly detected at the neonatal stage, but CS3 was replaced by CS4 as this muscle developed. When the breast and PLD muscles were denervated or suffered from muscular dystrophy, both CS3 and CS4 were co-expressed in these muscles in addition to Cf. These results definitely show that the C-protein isoform pattern varies during development and degeneration of chicken skeletal muscles, and in addition the dystrophic or denervated muscle differs from the neonatal muscle with regard to C-protein isoform expression. We suggest that chicken skeletal muscle degenerating due to denervation or muscular dystrophy does not simply recapture the nature of the neonatal muscle, but shifts in a somewhat different direction.  相似文献   

3.
Inherited muscular dystrophy of the chicken is thought to arise from abnormal development of trophic regulation of skeletal muscles by their innervating nerves. To determine whether expression of muscular dystrophy in the chicken is a property of the nerves or of the muscles, wing limb buds were transplanted between normal and dystrophic chick embryos at 312 days of incubation (stage 19–20). Muscles of donor limbs innervated by nerves of the hosts were compared to contralateral unoperated host limb muscles in chicks from 6 to 25 weeks after hatching. Expression of normal or dystrophic phenotype was determined by examination of five different properties which are altered in dystrophic chick muscle: electromyographic evidence of myotonia; fiber diameter; acetylcholinesterase activity, localization, and isozymes; lactic dehydrogenase activity; and succinic dehydrogenase activity. Genetically normal muscle innervated by nerves of normal or dystrophic hosts was phenotypically normal while genetically dystrophic muscle innervated by normal nerves was phenotypically dystrophic. The results suggest that inherited muscular dystrophy of the chicken arises from a defect of muscle rather than from a lesion in the nerves themselves.  相似文献   

4.
Neural regulation of mature normal fast twitch muscle of the chicken suppresses high activity, extrajunctional localization, and isozyme forms of acetylcholinesterase (AChE) characteristic of embryonic, denervated and dystrophic muscle. Normal adult slow tonic muscle ofthe chicken retains intermediate levels of activity and embryonic isozyme forms but not extrajunctional activity; it is not affected by muscular dystrophy. The hypothesis that neural regulation of the AChE system is lacking in slow tonic muscle and thus not affected by dystrophy was tested by denervating the fast twitch posterior latissimus dorsi and slow tonic anterior latissimus dorsi muscles of normal and dystrophic chickens. Extrajunctional AChE activity and embryonic isozyme forms increased, then declined, in both muscles. The results suggest that ocntrol of AChE is qualitatively similar in slow tonic and fast twitch muscle of the chicken.  相似文献   

5.
Regulation of apolipoprotein A1 synthesis in avian muscles   总被引:4,自引:0,他引:4  
Until recently, liver and intestinal mucosa were believed to be the sole sites of synthesis of apolipoprotein A1 (Apo-A1), the major protein component of serum high density lipoprotein particles. We recently showed (Shackelford, J.E., and Lebherz, H.G. (1983) J. Biol. Chem. 258, 7175-7180) that chick breast muscle also synthesizes and secretes Apo-A1 but does so at high rates only around the time of hatching. In the present work, we investigate the regulation of synthesis of Apo-A1 in chicken muscles. 1) The primary translation product encoded for by muscle Apo-A1 mRNA is about 2600 daltons larger than the mature serum protein which is consistent with the idea that, like its mammalian liver counterpart, chick muscle Apo-A1 mRNA codes for an NH2-terminal extension (prepro segment) which is 24 amino acids long. 2) The developmentally regulated rise and fall in muscle Apo-A1 synthesis which occurs around the time of hatching is associated with a large accumulation followed by depletion of Apo-A1 mRNA molecules during this period. 3) Reinitiation of Apo-A1 synthesis to high levels in mature breast muscle occurred in vivo following surgical denervation and in vitro by maintaining breast muscle explants for several days in defined culture media. 4) Cardiac, but not smooth, muscles also synthesize and secrete Apo-A1 at high levels around the time of hatching. These and other observations are discussed in terms of possible regulatory "signals" which may control Apo-A1 synthesis in avian muscles.  相似文献   

6.
Dystroglycan is a central component of dystrophin-glycoprotein complex that links extracellular matrix and cytoskeleton in skeletal muscle. Although dystrophic chicken is well established as an animal model of human muscular dystrophy, the pathomechanism leading to muscular degeneration remains unknown. We show here that glycosylation and laminin-binding activity of alpha-dystroglycan (alpha-DG) are defective in dystrophic chicken. Extensive glycan structural analysis reveals that Galbeta1-3GalNAc and GalNAc residues are increased while Siaalpha2-3Gal structure is reduced in alpha-DG of dystrophic chicken. These results implicate aberrant glycosylation of alpha-DG in the pathogenesis of muscular degeneration in this model animal of muscular dystrophy.  相似文献   

7.
Abnormal collagen synthesis in skeletal muscle of dystrophic chicken   总被引:1,自引:0,他引:1  
Specific molecular properties of skeletal muscle collagens from normal and dystrophic chickens have been compared. When dystrophy develops in skeletal muscle tissue there was an increase in the amount of total collagen and an increased proportion of Type III collagen in the tissue. The results from the cross-link study as well as the analysis of the solubility of collagen showed that skeletal muscle of dystrophic chicken produces more immature collagen fibers compared to normal chicken. These findings strongly indicate an important role of collagen in the pathogenesis of the extensive connective tissue prolipheration characteristic of muscular dystrophies.  相似文献   

8.
MUSCULAR dystrophy in the mouse is a hereditary disorder which is considered to be a primary myopathy1–5. Reports that the reactions of the muscles of dystrophic mice to neostigmine and d-tubocurarine are similar to those of denervated muscle6, that about one-quarter of the fibres are functionally denervated7, that dystrophic muscle has fewer functional motor units and less motor nerve fibres than normal muscle8 and the transplantation studies of Salafsky9, suggest, however, that neural factors are important in this disease. We have reported that denervation of skeletal muscle results in an increase in the content of the major sialoglycolipid of skeletal muscle, N-acetylneuraminylgalactosylglucosylceramide, GM3 (named according to Svennerholm's ganglioside nomenclature)10. The increased level of GM3 was shown to result from de novo synthesis of this material. We therefore examined the ganglioside composition of skeletal muscle in hereditary mouse myopathy to look for an effect similar to that induced by denervation. Our data, however, indicate that the GM3 level is decreased in dystrophic muscle. The decrease is accompanied by an increase in the amounts of the higher ganglioside homologues.  相似文献   

9.
In order to understand the pathogenesis of mouse muscular dystrophy, we investigated the levels of the thiobarbituric acid-reactive substances (TBARS), H2O2 and NADPH oxidase activity, which were relative to the acceleration of oxidative conditions, in tongue and hindleg skeletal muscles from C57BL/6J-dy mice. The TBARS content (702 nmol/g protein) in skeletal muscles from 2-months-old dystrophic mice was increased significantly over that (384 nmol/g protein) in muscles from age-matched normal mice. The H2O2 concentration in dystrophic skeletal muscles was 30% higher than that in normal ones. Microsomal NADPH oxidase activity which was related to the production of superoxide anions, was similar between dystrophic muscles (4.66 nmol/10 min/mg protein) and normal muscles (4.11 nmol/ 10 min/mg protein). These results indicate that oxidation is accelerated in the dystrophic muscles. However, the TBARS content in the tongues of dystrophic mice was identical to that of normal mice. This finding supports our bone-muscle growth imbalance hypothesis for the pathogenesis of mouse muscular dystrophy.  相似文献   

10.
Summary Dilations of the sarcotubular system and misaligned myofilaments have been reported as early indicators of muscular dystrophy in skeletal muscle. Since the developing tubular component is believed instrumental in initial myofilament alignment during myogenesis, tubular development is evaluated using normal and dystrophic chick embryo skeletal muscle and cultures of normal and dystrophic embryonic pectoral muscle incubated in the presence of horse spleen ferritin. Comparisons of the findings show that periodic tubules are absent from dystrophic somitic muscle and that invaginating tubules from the sarcolemma are found in fewer, randomly located areas of dystrophic pectoral muscle cells. The results indicate that the tubular component is not involved in the bizarre vesiculations seen in mature dystrophic muscle, however, the malalignment of dystrophic myofilaments is probably the result of the poorer development of the T system in this muscle.  相似文献   

11.
Duchenne muscular dystrophy is a musculoskeletal disease caused by mutations in the dystrophin gene. The purpose of this study was to use the mouse model of muscular dystrophy (mdx) to determine if the progression of the dystrophic phenotype in the diaphragm (costal) versus limb skeletal muscle (tibialis anterior) is associated with specific changes in extracellular regulated kinase (ERK1/2), p70 S6 kinase (p70(S6k)), or p38 signaling pathways. The studies detected that consistent with an earlier dystrophic phenotype, phosphorylation of p70(S6k) is elevated by 40% in the diaphragm with no change in limb muscle. In addition, phosphorylation of p38 kinase was decreased by 33% in the mdx diaphragm muscle. Levels of ERK1/2 as well as phosphorylation states were elevated in the diaphragm and limb muscle of mdx mice compared with age-matched control muscles. These results indicate that distinct signaling pathways are differentially activated in skeletal muscle of mdx mice. The specificity of these responses, particularly in the diaphragm, provides insight for potential targets for blunting the progression of the muscular dystrophy phenotype.  相似文献   

12.
Variations in the content and translatability of the poly(A)+ RNA and mRNA molecules coding for myosin (M) were studied in the hind leg muscles of genetically dystrophic mice. The poly(A)+ RNA content of total skeletal muscle failed to increase normally during progression of the disease. M mRNA, isolated from dystrophic normally during progression of the disease. M mRNA, isolated from dystrophic murine muscle poly(A)+ RNA, was mostly found to be associated with the 26S RNA species. The translation of M mRNA in an in vitro heterologous wheat germ system was lower at 8 and 16 weeks in the dystrophic group as compared with the controls. Analysis of the translation products via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and densitometric autoradiographic tracing demonstrated the gradual disappearance of a protein band corresponding to M, the major component of skeletal muscle. cDNA was synthesized, using M mRNA that was isolated and purified from normal and dystrophic mouse muscle as a template. Total radioactivity was measured in some cDNA fractions produced from normal and dystrophic mouse muscle, while other fractions were utilized for separation and sizing of cDNA by disc gel electrophoresis. The cDNA from normal muscle was hybridized with M mRNA from normal and 16-week-old dystrophic mouse muscles. The cDNA probe, hybridization experiments, and studies involving the content and synthesis of M mRNA suggest that murine muscular dystrophy elicited a shorter species of mRNA or shorter sequences of the same species of mRNA coding for M. Not all poly(A)+ mRNA sequences coding for M, found in control mice, were present in their dystrophic counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The sex-linked dwarf gene (dw) was introduced into companion muscular dystrophic (am) and nondystrophic (Am+) New Hampshire chicken lines to investigate influences of the dwarf gene on breast muscle weights, muscle fiber area, and the histological expression of muscular dystrophy. Dystrophic and nondystrophic chickens within dwarf or nondwarf genotypes were similar in body and carcass weights. Pectoralis and supracoracoideus muscle weights (as a percentage of adjusted carcass weight) were similar in nondystrophic dwarf and nondwarf males and females. In addition, pectoralis weight was similar in dystrophic dwarf males and dystrophic nondwarf males and females. However, pectoralis weight was significantly smaller in dystrophic dwarf females than in dystrophic nondwarf females, whereas supracoracoideus weight was significantly larger in dystrophic dwarf males than in dystrophic nondwarf males. Supracoracoideus weight was similar in dystrophic dwarf males and females and dystrophic nondwarf females. Pectoralis muscle fiber area was influenced by sex and by dwarf and dystrophy genotype. Muscle fiber area was larger in females than in males, smaller in dwarfs than in nondwarfs, and smaller in dystrophic than in nondystrophic muscles. Muscle fiber degeneration and adipose infiltration was more extensive in dystrophic than in nondystrophic females and males, and it was more advanced in dwarfs than in nondwarfs. Excessive acetylcholinesterase staining patterns were characteristic of dystrophic muscle in both dwarf and nondwarf genotypes. Nondystrophic and dystrophic dwarf male and female chickens are comparable substitutes for nondwarfs as biomedical models with respect to pectoralis histology, acetylcholinesterase staining pattern, and pectoralis muscle hypertrophy.  相似文献   

14.
Myofibrillar proteins synthesized in vitro by normal and dystrophic chicken muscle polysomes were purified and analyzed by SDS gel electrophoresis. No substantial difference in the synthesis of myofibrillar proteins could be detected. These observations suggest that the loss of muscle mass that is observed in muscular dystrophy is not related to a translational defect in the dystrophic polysomes.  相似文献   

15.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

16.
Dystroglycan is a major cell surface glycoprotein receptor for the extracellular matrix in skeletal muscle. Defects in dystroglycan glycosylation cause muscular dystrophy and alterations in dystroglycan glycosylation can impact extracellular matrix binding. Here we describe an immunoprecipitation technique that allows isolation of beta dystroglycan with members of the dystrophin-associated protein complex (DAPC) from detergent-solubilized skeletal muscle. Immunoprecipitation, coupled with shotgun proteomics, has allowed us to identify new dystroglycan-associated proteins and define changed associations that occur within the DAPC in dystrophic skeletal muscles. In addition, we describe changes that result from overexpression of Galgt2, a normally synaptic muscle glycosyltransferase that can modify alpha dystroglycan and inhibit the development of muscular dystrophy when it is overexpressed. These studies identify new dystroglycan-associated proteins that may participate in dystroglycan's roles, both positive and negative, in muscular dystrophy.  相似文献   

17.
Transferrin or a transferrin-like protein, with ability to stimulate myogenesis and terminal differentiation in vitro, is found in fast chicken muscle during embryonic development. After hatching, however, transferrin is no longer accumulated or is only weakly accumulated by fast muscles like the pectoralis major and the posterior latissimus dorsi but continues to be accumulated by slow muscles like the anterior latissimus dorsi. In congenic lines of chickens bearing the gene for muscular dystrophy, however, adult fast muscles do not lose the ability to accumulate transferrin. While transferrin is found selectively in adult normal and dystrophic muscle it does not appear to be synthesized by muscle cells. Immunocytochemical localization shows that transferrin is accumulated not so much by muscle fibers as it is by single cells in the muscle interstitial space. The relationship between transferrin presence and growth patterns in adult skeletal muscle is not currently understood but evidence suggests that transferrin stimulation of myogenesis observed in vitro may be mediated in vivo by non-muscle cells dwelling within the muscle interstitial space. These cells may act as transferrin-uptake sources for subsequent satellite cell stimulation.  相似文献   

18.
We synthesized a peptide designated R8 (amino acid residues 1157-1201) based on the primary structure presumed from the nucleotide sequence of the cDNA clone from the gene for Duchenne muscular dystrophy. Antibody to the synthetic R8 generated by immunization of rabbits was tested on human and mouse skeletal muscle by Western blotting analysis. The antibody reacted with a component of the 400K dystrophin of normal human and mouse skeletal muscles, but not with components of the muscles of Duchenne muscular dystrophy patients and mdx mice. Thus we established that this peptide sequence is in fact missing in the protein product 'dystrophin' encoded by the DMD gene. The antibody may prove useful for the diagnosis of the Duchenne types of muscular dystrophy.  相似文献   

19.
20.
Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c-Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号