首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of salinity (15, 25, 35, 45, and 55‰) on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179 was investigated under controlled cultivation in a 19‐day study. The results demonstrate that the dry biomass of N. oculata was the highest at a salinity of 25‰ among the treatments in the first 10‐day cultivation (P<0.05). During days 14–19 (stage III), the dry biomass productivity was the highest at a salinity of 35‰ (P<0.05). The algae had the highest chlorophyll a content (26.47 mg g?1) at 25‰ in stage I, and it decreased continuously at stage III. Protein content (as% of dry biomass) of algae reached the highest value of 42.25 ± 2.10% at 15‰, and the lipid content was the highest of 32.11 ± 1.30% of dry biomass at 25‰. However, the lipid productivity of these algae was the highest at 35‰ (64.71 mg L?1 d?1; P<0.001). C16 series content was the highest among the total fatty acid methyl esters (FAME), and eicosapentaenoic acid C20:5n‐3 (EPA) content was high at the low salinity. Fatty acid profiles of N. oculata varied significantly under different salinities.  相似文献   

2.
The aquatic corixid Trichocorixa reticulata (Guerin-Meneville) inhabits coastal marshes, brackish water ponds and salt ponds of high salinity, suggesting the presence of well developed mechanisms for hydromineral regulation.Groups of corixids acclimated in salinities ranging from fresh water to just above 300% sea water (100‰) were analyzed for total body water content, haemolymph ionic and osmotic levels, and haemolymph free amino acids.Results indicate an excellent ability to maintain haemolymph Na+, Cl?, Mg2+ and K+ hyperosmotic to the medium at low salinities and hyposmotic at high salinities. Calcium appears to conform closely to changes in external medium, becoming hyposmotic at very high salinities (80‰).Total haemolymph osmotic pressure was well regulated, the freezing point depression varying from 0.75°C in distilled water to 1.15°C in salinities of 100‰. Total body water was maintained at approx. 75% of the total animal wet weight at all salinities tested.Free amino acids were maintained between 40–60 mM in all tests and did not appear to change with salinity.  相似文献   

3.
The marine red alga Gracilaria crassa was investigated for its proximate composition, minerals, fatty acids, amino acids, and agar content to decipher its nutritional implications. The growth performance and pigments were studied under different combinations of temperature and salinity. On a dry weight basis the total lipid content was 1.30?±?0.05 %, protein was 5.18?±?0.64 %, carbohydrate was 42.0?±?1.2 %, ash was 43.18?±?1.15 %, and agar content was 21.52?±?0.73 %. Appreciable amounts of macro-, micro-nutrients (K?>?Na, Ca, Mg, and Fe), and essential amino acids (Ileu, His, Thr, Leu, and Lys) were found. Palmitic, stearic acid, and arachidonic acid were major fatty acids detected. The alga showed maximum daily growth rate (DGR %) 5.8?±?0.09 % at 25 °C, 35 ‰ salinity. The highest content of pigment R-phycoerythrin (444.7?±?1.9 μg g?1 fresh weight (FW) basis) was obtained at 25 ‰ salinity at 35 °C while that of R-phycocyanin (476.3?±?2.3 μg g?1 DW) at 30 ‰ salinity at 30 °C. This study revealed that this alga can be utilized as a potential source for food and feed. The data generated on best growth conditions will be very useful for farming of G. crassa in open sea. This alga could be used for production of natural colorants at defined control condition.  相似文献   

4.
Concentrations of ions and sucrose in the vacuolar sap of Chara canescens growing in an oligohaline lake (1.5 ‰) were estimated over the main growth period of the plants. During fructification vacuolar sap contained a mean of 41 mol m?3 (range 10.2–61.8) sucrose. The mean turgor pressure was 239 mosmol kg?1 (range 219–264). In long- and short-term experiments these plants were subjected to increasing salinities up to 22 ‰. When salinity was increased from 1.5 to 4.4 ‰ turgor pressure was restored to only 80 % of the initial value. This reduced level of turgor pressure was maintained up to a salinity of 22 ‰. The increase in vacuolar osmotic potential was due to the monovalent ions Na+, K+ and Cl?. The relative amounts of Na+ and K+ participating in the regulation process were dependent on external salinity. The regulatory mechanisms observed in the brackish water species Ch. canescens are compared with those reported from freshwater and euryhaline species.  相似文献   

5.
Ninety‐nine swordspine snook Centropomus ensiferus (9.80 ± 0.3 g, mean ± SE) were studied in order to evaluate the influence of salinity on physiological properties under rearing conditions. Growth performance, survival rates, and ion concentrations (Na+, K+, Cl?) as well proximal composition were measured over 76 days. Fish were exposed to three experimental salinities (0, 10, 20 ‰ , three replicates per treatment) and maintained in plastic tanks with a recirculation system equipped with flow‐through aquaria pumps (533 L per tank). Fish were fed twice daily to apparent satiation; at the end of the experiment the weight of fish kept in 10 ‰ was higher than that of fish kept in 0 and 20 ‰ , however no significant differences (P > 0.05) were observed among the experimental salinities. Survival was significantly lower in 10 ‰ salinity than in fish kept in 20 and 0 ‰ salinities. No significant differences (P > 0.05) were found in the Condition factor (K), specific growth rate (SGR), or in plasma Na+, K+, or Cl? concentrations among treatments. Salinities also did not affect body composition (P > 0.05), but were significantly lower (P < 0.05) than at the start of the experiment. However, towards the end of the experiment a large accumulation of visceral fat in fish farmed in the three salinities (VFI > 4%) was observed. Water quality was within the optimum range (T: 28.7 ± 0.1°C; O2: 5.6 ± 0.1 mg L?1; ammonia: 0.2 mg L?1) for the growth of swordspine snook. Data indicates that Censiferus is an ionoregulator fish and able to cultivate successfully in various osmotic conditions, and in turn, maintain high levels of survival in captivity.  相似文献   

6.
Intrinsic rates of population increase (r) were evaluated as a measure of population dynamics of four strains of Brachionus plicatilis and two strains of B. urceolaris from Iran in response to different salinities and feeding algae. Each rotifer strain was cultured at four salinities: 5, 20, 25 and 30‰ and fed with two microalgal species: Chlorella vulgaris and Nannochloropsis oculata. Salinity of 5‰ was critical for all the examined strains, at which r was at minimum and was different from the other salinities (P < 0.05). For B. plicatilis strains, the maximum r was observed in those fed on Chlorella at salinities of 10 and 30‰ (64 ± 0.01 day−1). While, in B. urceolaris, maximum r was for Nannochloropsis fed rotifers at salinity of 20‰ (0.69 ± 0.01 day−1). Maximum final population density (FD) was obtained for a strain of B. urceolaris fed on Nannochloropsis at 20‰ (329.3 ± 10.9 ind.mL−1). FD was relatively lower in B. plicatilis strains among all examined salinities. ANOVA showed the significant effect of salinity and rotifer strain, and algae × rotifer strain on both r and FD, and salinity × rotifer × algae on FD (P < 0.05). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The purpose of this study was to characterize the physiological response of Synechococcus elongatus, a brackish-water cyanobacterium, to salt stress. S. elongatus was grown in artificial sea water medium with different salinities. The response was measured by analysis of extracellular polymeric substances (EPS) and membrane lipids. The EPS yields were positively correlated (r2 = 0.99) with the salinity. The ratio of unsaturated to saturated fatty acids (U/S) increased with salinity in the range of 2.1‰ to 31.5‰ and decreased at 52.5‰. A positive linear correlation (r2 = 0.92) was observed between the average chain length (ACL) of fatty acids and the salinity. These data indicate that S. elongatus adapted to salt stress by the secretion of EPS and by adjusting the membrane fluidity through the changes in ACL or desaturation of fatty acids. These variations in EPS and fatty acids may be used as geochemical biomarkers in sediments to unravel changes in the salinity of ancient evaporative environments.  相似文献   

8.
Objective: The purpose of this study was to evaluate available variables of a long‐term weight maintenance study to investigate possible factors predisposing to weight regain after a period of weight loss. Research Methods and Procedures: The Maastricht Weight Maintenance Study is an ongoing longitudinal study of healthy men and women (29 men and 62 women; 18 to 65 years of age; BMI = 30.2 ± 3.1 kg/m2). A variety of parameters were measured before and after a very‐low‐energy diet and after a follow‐up of at least 2 years. Results: Mean weight loss was 7.9 ± 3.6 kg, and percent weight regain was 113.8 ± 98.1%. Percent BMI regain was negatively associated with an increase in dietary restraint (r = ?0.47, p < 0.05). Percent weight regain was negatively correlated with baseline resting metabolic rate (r = ?0.38, p = 0.01) and baseline fat mass (r = ?0.24, p = 0.05) and positively correlated with the magnitude of change in body weight (BW) expressed as maximum amplitude of BW (r = 0.21, p < 0.05). In addition, amplitude of BW was positively correlated with the frequency of dieting (r = 0.57, p < 0.01). Discussion: The best predictors for weight maintenance after weight loss were an increase in dietary restraint during weight loss, a high baseline resting metabolic rate, a relatively high baseline fat mass favoring a fat‐free mass–sparing effect during weight loss, a rather stable BW, and a low frequency of dieting. Therefore, BW maintenance after BW loss seems to be a multifactorial issue, including mechanisms that regulate an individuals’ energy expenditure, body composition, and eating behavior in such a way that energy homeostasis is maintained.  相似文献   

9.
The objective of this study was to evaluate the feeding rate of the great sturgeon (Huso huso) young of the year (YOY) and to investigate the effects of different feeding rates in maintaining the weight of fish during short periods of winter starvation. Six feeding rates of 0.2, 0.4, 0.6, 0.8, 1.0% body weight (BW) day?1 and feeding to satiation were considered for the first experiment. Each feeding rate was randomly assigned to three replicate tanks, with continuous feeding throughout a 5‐week winter period of water temperatures below 10°C. Fifteen fish were held in each of 18 tanks with an average initial body weight of 219.6 ± 6.9 g. After 5 weeks of feeding, the best performance was observed in fish fed 1% BW day?1, but negative growth was observed in fish fed 0.2% BW day?1. In the second experiment, fish were deprived of feed for 3 weeks at winter temperatures. Weights and condition factors of all fish decreased during starvation, while the differences in mean weight before and after the starvation period were not significant in fish fed a level of 0.2% BW day?1 and those fish fed to satiation. No mortality was recorded in either experiment. Results of this study indicate that a feeding rate of 1% BW day?1 would be sufficient for commercial fish farming of YOY of this species to maintain them over winter. Also, to maintain fish weights and prevent weight loss in overwintering ponds, a feeding rate of around 0.3% BW day?1 seems appropriate for hatcheries.  相似文献   

10.
The influence of 113 combinations of temperature (9, 12, 18, 25, 30 C), salinity (5–35 ‰ at 5 ‰ intervals), and light (4 levels) on the mean daily cell division rate (K) of the Narragansett Bay clone of Rhizosolenia fragilissima was examined following appropriate preconditioning. Growth did not occur below 9 C, but was excellent (K =~1.2) under certain combinations of light and salinity at 12, 18, and 25 C. The optimal salinity of 20–25 ‰ was temperature independent. Growth was not measurable at 5 ‰, although survival occurred. At 20 ‰ and 1200 ft-c, K increased approximately 1.8-fold from 0.65 to ~1.2 between 9 and 18–25 C. The optimal light intensity was generally 600 ft-c, although several light-temperature-salinity trends were found. At 10 ‰ at all temperatures, the mean daily division rate decreased with increasing light above 600 ft-c, a response found at all salinities at 12 C, but not at other temperatures. Between 15 and 25 ‰, at 18 and 25 C, mean growth was independent of light intensity; at 30–35 ‰ a direct relationship with light may be present with maximum growth occurring at 1200–1800 ft-c. The in situ and in vitro responses of Rhiz. fragilissima to salinity and the optimum and upper temperature levels are in general agreement. However, growth failure below 9 C in vitro is at odds with reports that natural populations occur even at ?1.11 C. The questions of to what extent this discrepancy reflects the occurrence of thermal clones, different taxa, and/or experimental artifacts are briefly discussed. It is suggested that naturally occurring populations found below 9 C might be designated as Rhiz. fragilissima f. faeröensis, and that Rhiz. fragilissima f. bergonii be used for populations growing at higher temperatures, until this matter is resolved. Observations on auxospore formation are presented.  相似文献   

11.
The dramatic decline in annual yield of the Japanese butterfish, Psenopsis anomala, in southwestern Taiwan over the past decade suggests that this stock might have been overexploited. However, its fishery biology and stock status is poorly understood. This study therefore provides the first information on P. anomala reproductive biology based on 983 specimens collected by small trawlers in southwestern Taiwan waters between February 1999 and February 2000. The sex ratio, 0.44 (431/983), differed significantly from 0.5 and females predominated in fork length above 180 mm. The relationships between body weight (BW) and fork length (FL) were estimated as BW = 1.62 × 10?4 × FL2.637 (r2 = 0.74; n = 430, P < 0.01) for females and BW = 1.28 × 10?4 × FL2.671 (r2 = 0.82; n = 552, P < 0.01) for males. Oocytes were mature at 0.5 mm in diameter or larger, and transparent eggs were found at diameters of 0.85 mm. Mean fecundity was estimated at 171 900 ± 61 700 and fecundity (F) was found to increase exponentially with gonad weight (GW) F = 5.4967GW0.511 (n = 132, r2 = 0.74). Mean batch fecundity was estimated to be 83 400 ± 44 600, and relative fecundity from 377 to 2588 (mean 1040) per gram body weight. Logistic curves describing the relationship between proportion of maturity (Pr) at each length interval and fork length were estimated as Pr = 1/(1 + e11.4194?0.0749FL) (r2 = 0.99, n = 351) for females and Pr = 1/(1 + e11.5113?0.0732FL) (r2 = 0.99, n = 258) for males. Size at 50% maturity was estimated as 15.7 and 15.3 cm FL for females and males, respectively. A multi‐spawning pattern was observed in the Japanese butterfish whereby it spawns throughout the year with a peak from February to July. A seasonal closure from April to July (spawning season for most fish species) can provide better breeding opportunities for adults and is believed to be a good fishery management measure for this species.  相似文献   

12.
The effects of salinity on growth, maturation and photosynthesis were examined in the filamentous alga Rhizoclonium sp. (Cladophoraceae, Chlorophyta) growing in a brackish water habitat in a canal draining into Tokyo Bay, Japan. In this habitat Rhizoclonium sp. was exposed to a wide salinity range, both daily, 5–23‰ during November 1996, and hourly, 6–24‰ during the spring tide day. From the results of culture experiments, growth and maturation of Rhizoclonium sp. occurred in the wide salinity range of 10–40‰ at 20 μmol photons m‐2s‐1 at 20°C, but did not occur at salinity of 0‰. Light saturation on the photosynthesis‐irradiance curve at 20°C at 20‰ was reached at 100 μmol photons m‐2s‐1, which is characteristic for shade‐adapted algae. On the photosynthesis‐salinity curve at 20°C at saturated irradiance (160 μmol photons m‐2s‐1), the net photosynthetic rate increased with increasing salinity up to 30‰ but decreased at 40‰. On the photosynthesis–salinity curve at 20°C at 20 μmol photons m‐2s‐1 (at near in situ irradiance), the photosynthetic rates were almost the same in the salinity range from 0 to 40‰. Therefore, this species is able to grow, reproduce and photosynthesize with a relative efficiency in a wide salinity range, which shows that it is well adapted to a brackish water environment.  相似文献   

13.
To compare the production and economic performance of two polyculture systems with different species combinations in brackishwater tide‐fed ponds, a 180‐day trial was carried out. In the first combination (T1), mullets (Mugil cephalus, Liza tade and L. parsia at 3 : 1 : 1.3 ratio) and tiger shrimp (Penaeus monodon) and in the second (T2), milkfish (Chanos chanos) and tiger shrimp were stocked keeping the fishes and shrimp at 8000 and 20 000 numbers ha?1, respectively, in both treatments with duplicate ponds. Since shrimp was an important component of these two systems with open water exchange, the dynamics of heterotrophic bacteria (THB) including Vibrio spp. (TVC) and the occurrence of viral infection agents were studied to understand the disease risks. Among the fishes in T1, M. cephalus attained the highest final weight of 92.29 ± 4.36 g followed by L. tade and L. parsia with 80.40 ± 4.02 and 54.02 ± 2.11 g, respectively. C. chanos in T2 had the highest net weight gain (127.85 g) and daily weight gain (0.71 g day?1), while M. cephalus in T1 attained the highest specific growth rate (1.60% day?1). Growth parameters of tiger shrimp were almost similar in both treatments, with no significant differences (P > 0.05). Though total production of fishes and shrimp was lower in T1 (689 kg ha?1 180 day?1), it was not significantly different (P > 0.05) from T2 (721 kg ha?1 180 day?1). Monthly THB and TVC were not alarming and the absence of viral infections in shrimp indicated no disease risk. Total income from T1 was significantly higher (P < 0.05) than that of T2, but net income and benefit‐cost ratio were insignificantly different between the treatments (P > 0.05). The present findings indicate that upon availability of stocking materials, both polyculture systems would be suitable farming options.  相似文献   

14.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

15.
Bagarinao  T.  Lantin-Olaguer  I. 《Hydrobiologia》2000,437(1-3):1-16
The potamidid snail Cerithidea cingulata is considered a pest in brackishwater milkfish ponds in the Philippines and has been controlled by the triphenyltin (TPT) compounds Aquatin and Brestan. But TPT is also toxic to other invertebrates, fishes, algae, bacteria and people, and high TPT residues occur in sea foods including milkfish. Thus, control of snails in milkfish ponds should be shifted from reliance on TPT to an integrated pest management (IPM) strategy. To formulate a responsible IPM, studies were conducted on C. cingulata in ponds and mangroves and the available data were synthesized with the relevant information from the literature. The deposit-feeding C. cingulata is a native resident of mangrove areas and becomes a problem in mangrove-derived ponds where the lack of competitors and predators results in 'ecological release' and population explosion. Snail densities ranged 1–470 m–2 in the mangroves and 100–5000 m–2 in ponds. In ponds, snails ranged 2–40 mm in shell length; those 25 mm long and 8 mm wide weighed 1 g on average, and had 150 mg flesh. Snails matured at 20 mm long and reproduced the whole year with a peak in Mar–Sep at water temperatures of 24–36 °C. Enriched sediments and stagnant water in ponds allowed fast growth and reproduction, low dispersal and high recruitment of snails. Snails were very tolerant to hypoxia and adverse conditions, but were killed within a week by sun-drying or by salinities of 48–70 and within 3 d by ammonium phosphate at 10 g l–1 or urea at 5 g l–1. IPM of snails requires changes in mind sets and perspectives of milkfish farmers and industry supporters and changes in farm practices and management. Snails must be viewed as a resource from which income can be made and employment can be generated. Harvest of snails for shellcraft and other enterprises also effectively removes the spawning population. Complete draining and sun-drying of ponds after harvest kills the adult snails and the egg strings on the bottom. Snails in puddles in the ponds may be killed by the usual nitrogen fertilizers and lime applied during pond preparation. Water input may be timed with periods of low veliger counts in the supply water. These IPM recommendations have yet to be verified.  相似文献   

16.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

17.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

18.
The farming of shrimp is developing quickly worldwide, and recently, ingredients such as seaweeds in low proportion (25 to 4 %), incorporated into the commercial food, have been shown to improve the shrimp productive variables. The change of commercial foods to commercial feed with a proportion of natural food, and finally, to natural food has been little and simultaneously evaluated. The aim of our study was to determine the relative contribution of dietary carbon to the growth of Litopenaeus vannamei fed with a proportion of 4 % Sargassum13C = ?20.9?±?0.05?‰), 4 % Ulva13C = ?20.6?±?0.6?‰) meal, and a control diet (δ13C?=??22.6?±?0.2?‰) in 60-L tanks for 30 days, and finally, with the green seaweed Ulva spp. (δ13C = ?13.2?±?0.25?‰) and Ulva meal (δ13C = ?14.5?±?0.6?‰) in open-air ponds for 120 days, by measuring δ13C for each of the foods and in the muscle of shrimp. After 15 days, the rates of metabolic turnover (Δ13C = δ13Cshrimp ? δ13Cfood) were constant until the end of the experiment in the tanks. The muscle of shrimp assimilated carbon from all diets, which demonstrated the potential use of combined diets and the optimization of their use in diets containing seaweed. Our data will be useful in future interpretations of field and laboratory isotopic values for this species.  相似文献   

19.
The physiological response of an estuarine clone of Nitzschia americana Fryx3ell was measured under experimental conditions of temperature and salinity which represent the average range of these variables in the Cape Fear River Estuary, North Carolina. The influence of temperature (10, 15, 20, 25, 30°C) and salinity (8, 15, 20, 26, 32‰) on specific growth rates, μ, and parameters of photosynthesis-irradiance curves, α, and Pmax were measured during maximum and minimum rates of diurnal photosynthesis using axenic semi-continuous batch cultures maintained at an irradiance saturating for photosynthesis (140 μE m-2·s-1). There was an increase in μ with increasing temperature up to a broad uptimum (25 ± 2.5°C), above which μ gradually declined. At the predicted optimum temperature of 25°C, μ increased as a linear function of salinity. oth light-limited (α) amd light-saturated (Pmax) rates of photosynthesis increased as salinity decreased. The effect of temperature on a and Pmax was complex and dependent on salinity. Pmax exhibited a diurnal periodicity, whereas estimates of a were not significantly different between sampling periods. Growth efficiencey opf N. americana, calculated as the ratio between specific growth rates and rates of gross photosynthesis, increased with an increase in salinity with a maximum at the predicted optimum temperature and salinity of 25°C and 32‰, suggesting and uncoupling between photosynthesis and growth at nonoptimum growth conditions.  相似文献   

20.
In order to evaluate the combined effects of simulated acid rain (SAR) and salinity on the physiological responses of macroalgae, Ulva prolifera was cultured under three salinity treatments (5, 10, 25 ‰) and at different pH, i.e., at pH 4.4 (C), pH 4.4(F), where the pH of the culture increased from 4.4 to approximately 7.8 during the cultivation period, or in absence of SAR at pH 8.2(C), at 100 μmol(photon) m–2 s–1 and 20°C. Compared to 25‰ salinity, Relative growth rate (RGR) of U. prolifera was enhanced by 10‰ salinity, but decreased by 5‰ salinity. No significant differences in RGR were observed between the pH 8.2(C) and pH 4.4(F) treatments, but the chlorophyll a content was reduced by SAR. Negative effects of SAR on the photosynthesis were observed, especially under low salinity treatments. Based on the results, we suggested that the U. prolifera showed a tolerance to a wide range of salinity in contrast to the low pH induced by acid rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号