首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell membrane fluctuations (CMF) of human erythrocytes, measured by point dark field microscopy, were shown to depend, to a large extent, on intracellular MgATP (Levin, S.V., and R. Korenstein. 1991. Biophys. J. 60:733–737). The present study extends that investigation and associates CMF with F-actin's ATPase activity. MgATP was found to reconstitute CMF in red blood cell (RBC) ghosts and RBC skeletons to their levels in intact RBCs, with an apparent Kd of 0.29 mM. However, neither non-hydrolyzable ATP analogues (AMP-PNP, ATPγS) nor hydrolyzable ones (ITP, GTP), were able to elevate CMF levels. The inhibition of ATPase activity associated with the RBC's skeleton, carried out either by the omission of the MgATP substrate or by the use of several inhibitors (vanadate, phalloidin, and DNase I), resulted in a strong decrease of CMF. We suggest that the actin's ATPase, located at the pointed end of the short actin filament, is responsible for the MgATP stimulation of CMF in RBCs.  相似文献   

2.
Low frequency submicron fluctuations of the cell membrane were recently shown to be characteristic for different cell types, nevertheless their physiological role is yet unknown. Point dark-field microscopy based recordings of these local displacements of cell membrane in human erythrocytes, subjected to cyclic oxygenation and deoxygenation, reveals a reversible decrease of displacement amplitudes from 290 +/- 49 to 160 +/- 32 nm, respectively. A higher rate of RBC adhesion to a glass substratum is observed upon deoxygenation, probably due to a low level of fluctuation amplitudes. The variation in the amplitude of these displacements were reconstituted in open RBC ghosts by perfusing them with composite solutions of 2,3 diphosphoglycerate, Mg+2, and MgATP, which mimic the intracellular metabolite concentrations in oxygenated and deoxygenated erythrocytes. The mere change in intracellular Mg+2 during oxygenation-deoxygenation cycle is sufficient to explain these findings. The results imply that the magnitude of fluctuations amplitude is directly connected with cell deformability. This study suggests that the physiological cycle of oxygenation-deoxygenation provides a dynamic control of the bending deformability and adhesiveness characteristics of the RBC via a Mg+2-dependent reversible assembly of membrane-skeleton proteins. The existing coupling between oxygenation-deoxygenation of the RBC and its mechanical properties is expected to play a key role in blood microcirculation and may constitute an example of a general situation for other circulating blood cells, where the metabolic control of cytoskeleton dynamics may modulate their dynamic mechanical properties.  相似文献   

3.
The interaction of erythrocyte ghosts and vesicles with chromatographed hemoglobin (Hb) A and Hb S was studied under various conditions. Although no binding of either Hb A or Hb S to inside-out vesicles was detected, under conditions of physiological ionic strength and pH, several properties of white membrane ghosts were effected by the presence of Hb. Addition of Hb A and Hb S (2 g/dl) to membrane ghosts in 6 mM MgATP, 150 mM NaCl, 10 mM Tris-HCl buffer, pH 7.4, was found to effect the echinocyte-discocyte transition, the extent of endocytosis, the volume, and the sealing of ghosts. Our observations suggest that the structure of membrane ghosts is influenced by cytosol proteins and that the environment of the red cell membrane plays an important role in the definition and the control of the membrane structure and function.  相似文献   

4.
Catecholamines are accumulated by bovine chromaffin-granule "ghosts" in the presence of MgATP at 25 degrees C. With low concentrations of catecholamine, ratios of internal to external amine concentration of up to 20 000 were obtained. These values fit well with a transport model in which amine accumulation is both electrogenic and dependent on a pH gradient across the membrane.  相似文献   

5.
Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.  相似文献   

6.
Botulinum neurotoxin (NT) is a potent inhibitor of neurotransmitter secretion, but its intracellular mechanism and site of action are unknown. In this study, the intracellular action of NT was investigated by rendering the secretory apparatus of PC12 cells accessible to macromolecules by a recently described "cell cracking" procedure. Soluble cytoplasmic factors were depleted from permeabilized cells by washing to generate cell "ghosts" which retained cellular structural components and intracellular organelles (including secretory granules). The PC12 cell ghosts exhibited Ca(2+)-activated [3H]norepinephrine release which was enhanced by cytosolic proteins and MgATP. PC12 cell ghosts provide the opportunity to distinguish the intracellular action of NT on soluble cytoplasmic components versus structural cellular components. The 150-kDa NT and the 50-kDa light chain of serotypes E and B, and to a lesser extent type A, inhibited Ca(2+)-activated [3H]norepinephrine release in PC12 ghosts, but not in intact PC12 cells. The 100-kDa heavy chain had no effect. This indicates that NT acts at an intracellular site in these cells permeabilized by "cell cracking." The inhibition of secretion by NT was rapid and irreversible under the incubation conditions used. NT inhibition of [3H]-norepinephrine release from PC12 ghosts occurred in the absence of cytosolic proteins and MgATP and was not reversed by the addition of cytosolic proteins and MgATP, indicating that NT acts at an intracellular membranous or cytoskeletal site.  相似文献   

7.
Summary Using the flow EPR technique, we investigated the resealed ghost deformability in shear flow and the effects of the altered state of cytoskeletal network induced by hypotonic incubation of ghosts. Isotonically resealed ghosts in the presence of Mg-ATP, in which alteration of cytoskeletal network is not effected, have smooth biconcave discoid shapes, and show a flow orientation and deformation behavior similar to that of erythrocytes, except that higher viscosities are required to induce the same degrees of deformation and orientation as in erythrocytes. The flow behavior of resealed ghosts is Mg-ATP dependent, and the shape of the ghosts resealed without Mg-ATP is echinocytic. In contrast, the ghosts resealed by hypotonic incubation show a markedly reduced deformability even with Mg-ATP present. Nonreducing, nondenaturing polyacrylamide gel electrophoresis (PAGE) of the low ionic strength extracts from hypotonically resealed ghosts reveals a shift of the spectrin tetramer-dimer equilibrium toward the dimers. In the maleimide spin-labeled ghosts, the ratios of the weakly immobilized to the strongly immobilized EPR intensities are larger in hypotonically resealed ghosts than in the isotonically resealed ghosts, indicating an enhanced mobility in the spectrin structure in the former. Photomicrographs of hypotonically resealed ghosts show slightly stomatocytic transformations. These data suggest that the shape and the deformability loss in hypotonically resealed ghosts are related to an alteration of the spectrin tetramer-dimer equilibrium in the membrane. Thus, the shift of the equilibrium is likely to affect the regulation of the membrane deformability both in normal and pathological cells such as hereditary elliptocytes.  相似文献   

8.
To determine whether a cell metabolite was involved in active calcium transport, the cell contents of human erythrocytes were subjected to high dilutions and the resultant ghosts were checked for their ability to actively transport calcium. It was found that the diluted erythrocyte ghosts did retain their capacity to actively transport calcium and that the characteristics of this transport process appeared to be unaltered by the high dilutions. Calcium analysis of the cell membrane and cell supernatant indicated that almost all of the calcium was lost from the cell solution rather than the cell membrane as active calcium transport proceeded. Therefore it appeared that calcium was able to cross the cell membrane without the aid of a cell metabolite. Investigations with layered erythrocytes indicated that the active transport of calcium was not assisted by centrifugation. Neither inorganic phosphate, pyrophosphate, nor an adenine nucleotide appeared to accompany calcium across the membrane as indicated by total phosphate and inorganic phosphate analysis and 260-nm readings of the deproteinized supernatant.  相似文献   

9.
We have examined the role of receptor clustering in intact erythrocyte membranes exhibiting enhanced lectin-mediated cell agglutination by analyzing freeze-fracture and freeze-etch images of human erythrocytes labeled with ferritin-conjugated soybean agglutinin. We find that trypsinization and fixation of intact erythrocytes, in either order, causes no alteration of the random distribution of ferritin-conjugated soybean agglutinin on the surfaces of these cells as compared to their distribution on the surfaces of fixed erythrocytes and untreated erythrocyte ghosts. Furthermore, clustering of the intramembranous particles in the membrane of intact erythrocytes was not found with any of the cells described above.We conclude that clustering of the soybean agglutinin receptors is not a major factor involved in the enhanced agglutination of intact trypsinized erythrocytes. Caution is necessary in transferring information obtained with erythrocyte ghosts, where clustering can be induced, to intact erythrocytes.  相似文献   

10.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

11.
Specifically labeled 59Fe ghosts have been prepared by incubation of whole reticulocytes with 59Fe3+-transferrin-CO3(2)-- followed by washing and ghost isolation. The binding of 59Fe by the membrane fraction is quite stable over a wide range of conditions, but iron mobilization occurs on incubation with chelating agents or cell lysate. The time course of 59Fe mobilization by unlabeled reticulocyte lysate exhibits five apparently zero-order phases. The rate of iron mobilization is linearly dependent on the concentration of 59Fe ghosts present in the incubation mixture. In contrast, the relative concentration of lysate appears to exhibit a saturation dependence with regard to membrane iron mobilization. Bathophenanthroline sulfonate follows a multiphasic time course of iron mobilization similar to that found with the lysate. Lysate from mature erythrocytes was found to mobilize iron with kinetics that are identical to reticulocyte lysate. The number and duration of the phases is independent of the mobilizing agent. The role of the membrane fraction in regulating the rate of iron release to cytosol was also investigated by the repetitive incubation of 59Fe ghosts with fresh lysate. The rate of 59Fe mobilization depended on the condition of the ghost with regard to prior 59Fe depletion. This publication emphasizes the active role of the membrane fraction in determining the rate at which iron will become available to the cytosol and the possibility that cytosol factors modulate the action of membrane bound components.  相似文献   

12.
Y I Henis  O Gutman 《FEBS letters》1988,228(2):281-284
Two independent methods demonstrated that resealed human erythrocyte ghosts undergo Sendai virus-mediated cell-cell fusion to a much lower degree (about 4%) than intact erythrocytes, in spite of similar levels of viral envelope-cell fusion in the two preparations. Fluorescence photobleaching recovery (FPR) showed similar lateral mobilities of the viral glycoproteins following fusion with either ghosts or whole erythrocytes. It is suggested that although viral glycoprotein mobilization in the cell membrane is essential for cell-cell fusion, the target cell properties are also important; in the absence of the required cellular parameters, the mobilization may not be a sufficient condition.  相似文献   

13.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

14.
The Ca2+-dependent adenosine triphosphatase activity associated with the plasma membrane of normal human erythrocytes is similar to that of erythrocytes from patients with hereditary spherocytosis. When spherocytic ghosts are compared to age-matched controls, however, they show a significantly decreased Ca2+-dependent adenosine triphosphatase activity. The role of the relative deficiency of Ca2+-dependent adenosine triphosphatase in spherocytic ghosts is discussed in the light of the effects of intracellular [Ca2+] on the deformability and the rigidity of the cell membrane. This enzyme may be involved in the molecular mechanism of hereditary spherocytosis.  相似文献   

15.
To identify the specific component(s) in the target membrane involved in fusion of vesicular stomatitis virus (VSV), we examined the interaction of the virus with human erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion was monitored spectrofluorometrically by the octadecylrhodamine dequenching assay. Fusion of VSV with lipid-symmetric erythrocyte ghosts was rapid at 37 degrees C and low pH, whereas little or no fusion was observed with lipid-asymmetric ghosts. Conversion of phosphatidylserine in the lipid-symmetric ghost membrane to phosphatidylethanolamine by means of the enzyme phosphatidylserine decarboxylase did not alter the target membrane's susceptibility to VSV fusion. Spin-labeled phospholipid analogues with phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine headgroups incorporated into the outer leaflet of lipid-asymmetric erythrocytes did not render those membranes fusogenic. Electron spin resonance spectra showed an increased mobility of a phosphatidylcholine spin-label incorporated into the outer leaflet of lipid-symmetric erythrocyte ghosts as compared to that of lipid-asymmetric ghosts. These results indicate that the susceptibility to VSV fusion is not dependent on any particular phospholipid but rather is related to packing characteristics of the target membrane.  相似文献   

16.
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes . The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance ( n . m . r . ) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.  相似文献   

17.
The role of osmotic forces and cell swelling in the influenza virus-induced fusion of unsealed or resealed ghosts of human erythrocytes was investigated under isotonic and hypotonic conditions using a recently developed fluorescence assay (Hoekstra, D., De Boer, T., Klappe, K., Wilschut, J. (1984) Biochemistry 23, 5675-5681). The method is based on the relief of fluorescence selfquenching of the fluorescent amphiphile octadecyl rhodamine B chloride (R18) incorporated into the ghost membrane as occurs when labeled membranes fuse with unlabeled membranes. No effect neither of the external osmotic pressure nor of cell swelling on virally mediated ghost fusion was established. Influenza virus fused unsealed ghosts as effectively as resealed ghosts. It is concluded that neither osmotic forces nor osmotic swelling of cells is necessary for virus-induced cell fusion. This is supported by microscopic observations of virus-induced fusion of intact erythrocytes in hypotonic and hypertonic media. A disruption of the spectrin-actin network did not cause an enhanced cell fusion at acidic pH of about 5 or any fusion at pH 7.4.  相似文献   

18.
Summary The water diffusion across human erythrocyte membrane has been studied on intact cells and resealed ghosts by a doping NMR technique. Although the water exchange time of ghosts was longer than that of erythrocytes, no significant differences in their diffusional permeability were noticed for temperatures in the range 2–43°C. Contrary to what was previously noticed in erythrocytes, no significant increase in the water exchange time of ghosts in the acid range of pH occurred.  相似文献   

19.
Two steps were required for ATP-dependent endocytosis in resealed erythrocyte ghosts. The first step required incubation with Mg-ATP at 37 °C, while the second step required primaquine and occurred at 0 or at 37 °C. These two steps were apparently also required for ATP-dependent endocytosis in erythrocytes. Endocytosis in white ghosts was similar to that in resealed ghosts and erythrocytes; the main difference was that the requirement of primaquine for the second step was less strict in white ghosts; in them, appreciable endocytosis took place with no added primaquine. Nonetheless, endocytosis in all three types of cells was stimulated by primaquine. The fluidity of the membranes as sensed by spin-labeled phosphatidylcholine was measured with and without primaquine. The fluidity of erythrocytes was increased by addition of primaquine or by conversion of the erythrocytes to white ghosts; the effect primaquine had on the fluidity of white ghosts was not detectable by the spin label. This suggested that a fluidizing or loosening of the membrane structure was required for the second step of ATP-dependent endocytosis, and that this loosening could be accomplished either by primaquine or by the process of preparing white ghosts.  相似文献   

20.
The tendency of human erythrocytes to adhere to vascular endothelial cells was assessed as a function of the transbilayer distribution of the phospholipids of the erythrocyte membrane, using erythrocyte ghosts in which transbilayer lipid arrangement was manipulated by varying the conditions under which the ghosts were prepared. By two different assays, ghosts with symmetric lipid bilayers adhered strongly to monolayers of cultured endothelial cells, whereas ghosts with normal asymmetric membranes, like normal erythrocytes, did not. These results provide direct evidence that changes in phospholipid asymmetry can alter the tendency of erythrocytes to adhere to endothelial cells, and therefore imply that transbilayer phospholipid arrangement may influence the behavior of erythrocytes in the circulatory system and may contribute to the formation of microvascular occlusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号