首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four new complementation groups of mutations which confer resistance to several amino acid analogs in Saccharomyces cerevisiae are described. These mutants were isolated on medium containing urea as the nitrogen source, in contrast to previous studies that had used medium containing proline. All four resistance to amino acid analog (raa) complementation groups appear to confer resistance by reducing amino acid analog and amino acid uptake. In some genetic backgrounds, raa leu2 and raa thr4 double mutants are inviable, even on rich medium. The raa4 mutation may affect multiple amino acid transport systems, since raa4 mutants are unable to use proline as a nitrogen source. raa4 is, however, unlinked to a previously described amino acid analog resistance and proline uptake mutant, aap1, or to the general amino acid permease mutant gap1. Both raa4 and gap1 prevent uptake of [3H]leucine in liquid cultures. The raa1, raa2, and raa3 mutants affect only a subset of the amino acid analogs and amino acids affected by raa4. The phenotypes of raa1, -2, and -3 mutants are readily observed on agar plates but are not seen in uptake and incorporation of amino acids measured in liquid media.  相似文献   

2.
Ureidosuccinic acid (USA) is an intermediary product in pyrimidine biosynthesis. When proline was the sole nitrogen source, USA uptake occurred; however, when ammonium sulfate or glutamic acid was the nitrogen source, uptake was inhibited. Thus, a ura2 strain which does not synthesize USA would not grow when this substance was supplied on an ammonium sulfate or glutamic acid medium. Mutants are described in which uptake was constitutive on such a medium. Permeaseless mutants for USA have been found, and evidence is presented for permease specificity. It is shown that all constitutive mutants use the same transport system that is missing in the permeaseless mutant. These mutants are constitutive for two permeases: the specific USA permease and the general amino acid permease. The transport system studied here, like the general amino acid transport system, is regulated by nitrogen metabolism. These facts and others suggest that our permease constitutive mutants are impaired in nitrogen metabolism.  相似文献   

3.
The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease.  相似文献   

4.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. The products of Anabaena open reading frames (ORFs) all1046, all1047, all1284, alr1834 and all2912 were identified as putative elements of a neutral amino acid permease. Anabaena mutants of these ORFs were strongly affected (1-12% of the wild-type activity) in the transport of Pro, Phe, Leu and Gly and also impaired (17-30% of the wild-type activity) in the transport of Ala and Ser. These results identified those ORFs as the nat genes encoding the N-I neutral amino acid permease. According to amino acid sequence homologies, natA (all1046) and natE (all2912) encode ATPases, natC (all1047) and natD (all1284) encode transmembrane proteins, and natB (alr1834) encodes a periplasmic substrate-binding protein of an ABC-type uptake transporter. The natA, natC, natD and natE mutants showed defects in Gln and His uptake that were not observed in the natB mutant suggesting that NatB is not a binding protein for Gln or His. The nat mutants released hydrophobic amino acids to the medium, and amino acid release took place at higher levels in cultures incubated in the absence of combined N than in the presence of nitrate. Alanine was the amino acid released at highest levels, and its release was impaired in a mutant unable to develop heterocysts. The nat mutants were also impaired in diazotrophic growth, with natA, natC, natD and natE mutants showing more severe defects than the natB mutant. Expression of natA and natC, which constitute an operon, natCA, as well as of natB was studied and found to take place in vegetative cells but not in the heterocysts. These results indicate that the N-I permease is necessary for normal growth of Anabaena sp. strain PCC 7120 on N2, and that this permease has a role in the diazotrophic filament specifically in the vegetative cells.  相似文献   

5.
An enrichment medium and a new sensitive medium were developed to detect malolactic variants in different strains of lactic bacteria. Factors such as the concentration of glucose and l-malate, pH level, and the type of indicator dye used are discussed with regard to the kinetics of malic acid conversion to lactic acid. Use of these media allowed a rapid and easier screening of mutagenized streptococcal cells unable to ferment l-malate. A collection of malolactic-negative mutants of Streptococcus lactis induced by UV, nitrosoguanidine, or transposonal mutagenesis were characterized. The results showed that several mutants were apparently defective in the structural gene of malolactic enzyme, whereas others contained mutations which may either inactivate a putative permease or affect a regulatory sequence.  相似文献   

6.
Six different temperature-sensitive (ts) mutants have been isolated which have parental beta-galactoside permease levels at low temperatures but have decreased permease levels when grown at high temperatures. These mutants were derived from Escherichia coli ML308 (lacI(-)Y(+)Z(+)A(+)). After N-methyl-N'-nitro-N'-nitro-soguanidine mutagenesis, ampicillin was used to select for cells unable to grow on low lactose concentrations at 42 C. Temperature-sensitive mutants were assayed for galactoside permease activity after growth in casein hydrolysate medium at 25 or 42 C by measuring both radioactive methylthio-beta-d-galactoside uptake and in vivo o-nitrophenyl-beta-d-galactoside hydrolysis. The six conditional isolates have decreased levels of galactoside permease which are correlated with decreased growth rates at elevated temperatures. The low permease levels are not due to a temperature labile lacY gene product but rather to a temperature labile synthesis rate of functional permease. Some of the mutants exhibit a ts increase in permeability as shown by the increased leakage of intracellular beta-galactosidase and by the increased rate of in vivo o-nitrophenyl-beta-d-galactoside hydrolysis via the nonpermease mediated entry mechanism. Preliminary evidence indicates that transport in general is decreased in these mutants, yet there is some specificity in the mutational lesion since glucoside transport is unaffected. All these observations suggest that these mutants have ts alterations in membrane synthesis which results in pleiotropic effects on various membrane functions.  相似文献   

7.
Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.  相似文献   

8.
Interposon mutagenesis of a region upstream of the petABC(fbcFBC) operon, encoding the ubiquinol: cytochrome c2 oxidoreductase (bc1 complex) of the photosynthetic bacterium Rhodobacter capsulatus revealed the presence of two genes, petP and petR. DNA nucleotide sequence determination of this region indicated that petP and petR are transcribed in the same direction as the petABC(fbcFBC) operon, and are translationally coupled. A silent insertion located in the interoperonal region separating petPR and the petABC(fbcFBC) genes indicated that these clusters have separate promoters. The deduced amino acid sequence of the putative petR gene product is homologous to various bacterial response regulators, especially to those of the OmpR subgroup. Moreover, it was found that PetR mutants are unable to grow on rich or minimal media by either photosynthesis or respiration, demonstrating that these gene products are essential for growth of R. capsulatus.  相似文献   

9.
J. H. McCusker  J. E. Haber 《Genetics》1988,119(2):317-327
Cyocloheximide resistant lethal (crl) mutants of Saccharomyces cerevisiae, defining 22 unlinked complementation groups, are unable to grow at 37 degrees. They are also highly pleiotropic at their permissive temperature of 25 degrees. The mutants are all unable to arrest at the G1 stage of the cell cycle when grown to stationary phase or when starved for a single amino acid, though they do arrest at G1 when deprived of all nitrogen. The crl mutants are also hypersensitive to various amino acid analogs and to 3-aminotriazole. These mutants also "tighten" leaky auxotrophic mutations that permit wild-type cells to grow in the absence of the appropriate amino acid. All of these phenotypes are also exhibited by gcn mutants affecting general control of amino acid biosynthesis. In addition, the crl mutants are all hypersensitive to hygromycin B, an aminoglycoside antibiotic that stimulates translational misreading. The crl mutations also suppress one nonsense mutation which is phenotypically suppressed by hygromycin B. Many crl mutants are also osmotically sensitive. These are phenotypes which the crl mutations have in common with previously isolated omnipotent suppressors. We suggest that the the crl mutations all affect the fidelity of protein translation.  相似文献   

10.
The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.  相似文献   

11.
Growth of a highly virulent strain of the phytopathogen Corynebacterium fascians on rich media at 37 degrees C resulted in a loss of virulence in a majority of the population within 10 generations. Strains retained virulence during cultivation at 30 degrees C on a minimal medium with ammonia as a nitrogen source. Populations of avirulent strains on the surfaces of pea seedlings decreased, whereas the number of cells of the virulent strain increased 1,000-fold during a 3-week period. All avirulent mutants isolated by growth on rich media at 37 degrees C were unable to grow on media containing agmatine or proline as sole sources of nitrogen. The ability of the mutants to grow on pea seedlings and cause fasciation disease appeared to be related to their ability to utilize nitrogen sources available on plant surfaces.  相似文献   

12.
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.  相似文献   

13.
Growth of a highly virulent strain of the phytopathogen Corynebacterium fascians on rich media at 37 degrees C resulted in a loss of virulence in a majority of the population within 10 generations. Strains retained virulence during cultivation at 30 degrees C on a minimal medium with ammonia as a nitrogen source. Populations of avirulent strains on the surfaces of pea seedlings decreased, whereas the number of cells of the virulent strain increased 1,000-fold during a 3-week period. All avirulent mutants isolated by growth on rich media at 37 degrees C were unable to grow on media containing agmatine or proline as sole sources of nitrogen. The ability of the mutants to grow on pea seedlings and cause fasciation disease appeared to be related to their ability to utilize nitrogen sources available on plant surfaces.  相似文献   

14.
The major nonmitochondrial isozyme of malate dehydrogenase (MDH2) in Saccharomyces cerevisiae cells grown with acetate as a carbon source was purified and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a subunit molecular weight of approximately 42,000. Enzyme assays and an antiserum prepared against the purified protein were used to screen a collection of acetate-nonutilizing (acetate-) yeast mutants, resulting in identification of mutants in one complementation group that lack active or immunoreactive MDH2. Transformation and complementation of the acetate- growth phenotype was used to isolate a plasmid carrying the MDH2 gene from a yeast genomic DNA library. The amino acid sequence derived from complete nucleotide sequence analysis of the isolated gene was found to be extremely similar (49% residue identity) to that of yeast mitochondrial malate dehydrogenase (molecular weight, 33,500) despite the difference in sizes of the two proteins. Disruption of the MDH2 gene in a haploid yeast strain produced a mutant unable to grow on minimal medium with acetate or ethanol as a carbon source. Disruption of the MDH2 gene in a haploid strain also containing a disruption in the chromosomal MDH1 gene encoding the mitochondrial isozyme produced a strain unable to grow with acetate but capable of growth on rich medium with glycerol as a carbon source. The detection of residual malate dehydrogenase activity in the latter strain confirmed the existence of at least three isozymes in yeast cells.  相似文献   

15.
Many fungi undergo a morphological transition to filamentous growth in response to limiting nutrient conditions. Constitutively elongated Saccharomyces cerevisiae mutants ( elm ) have been isolated; the ELM1 gene encodes a putative serine/threonine protein kinase. A novel allele, elm1-15 , has been isolated in an S288C-derived strain, which causes a pleiotropic phenotype, including media-specific growth effects, abnormal morphology and altered stress response, in cells that are auxotrophic for tryptophan. elm1-15 trp1 cells cannot use many nitrogen sources, are sensitive to amino acid analogues, have very low general amino acid permease activity and do not accumulate trehalose. In contrast, haploid elm1-15 TRP1 cells grow well in budding form on all media, are stress resistant and overaccumulate trehalose. Several lines of evidence suggest that Elm1 acts on functions related to the RAS /cAMP pathway. Overexpression of Elm1 partially rescues the ts phenotype of cdc25 and cyr1 mutants. Deletion of ELM1 in low PKA activity mutants increased the severity of their phenotypes, and activation of Ras2 decreases the cell elongation phenotype of elm1 mutants. A 'signal integration' model for the complex relationship of Elm1 and the RAS/ cAMP pathway in controlling morphogenesis in response to nutrients is proposed.  相似文献   

16.
Amino acid transport in plants is mediated by at least two large families of plasma membrane transporters. Arabidopsis thaliana, a nonmycorrhizal species, is able to grow on media containing amino acids as the sole nitrogen source. Arabidopsis amino acid permease (AAP) subfamily genes are preferentially expressed in the vascular tissue, suggesting roles in long-distance transport between organs. We show that the broad-specificity, high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER1 (LHT1), an AAP homolog, is expressed in both the rhizodermis and mesophyll of Arabidopsis. Seedlings deficient in LHT1 cannot use Glu or Asp as sole nitrogen sources because of the severe inhibition of amino acid uptake from the medium, and uptake of amino acids into mesophyll protoplasts is inhibited. Interestingly, lht1 mutants, which show growth defects on fertilized soil, can be rescued when LHT1 is reexpressed in green tissue. These findings are consistent with two major LHT1 functions: uptake in roots and supply of leaf mesophyll with xylem-derived amino acids. The capacity for amino acid uptake, and thus nitrogen use efficiency under limited inorganic N supply, is increased severalfold by LHT1 overexpression. These results suggest that LHT1 overexpression may improve the N efficiency of plant growth under limiting nitrogen, and the mutant analyses may enhance our understanding of N cycling in plants.  相似文献   

17.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

18.
Until recently, genetic analysis of Mycobacterium tuberculosis, the causative agent of tuberculosis, was hindered by a lack of methods for gene disruptions and allelic exchange. Several groups have described different methods for disrupting genes marked with antibiotic resistance determinants in the slow-growing organisms Mycobacterium bovis bacillus Calmette-Guérin (BCG) and M. tuberculosis. In this study, we described the first report of using a mycobacterial suicidal plasmid bearing the counterselectable marker sacB for the allelic exchange of unmarked deletion mutations in the chromosomes of two substrains of M. bovis BCG and M. tuberculosis H37Rv. In addition, our comparison of the recombination frequencies in these two slow-growing species and that of the fast-growing organism Mycobacterium smegmatis suggests that the homologous recombination machinery of the three species is equally efficient. The mutants constructed here have deletions in the lysA gene, encoding meso-diaminopimelate decarboxylase, an enzyme catalyzing the last step in lysine biosynthesis. We observed striking differences in the lysine auxotrophic phenotypes of these three species of mycobacteria. The M. smegmatis mutant can grow on lysine-supplemented defined medium or complex rich medium, while the BCG mutants grow only on lysine-supplemented defined medium and are unable to form colonies on complex rich medium. The M. tuberculosis lysine auxotroph requires 25-fold more lysine on defined medium than do the other mutants and is dependent upon the detergent Tween 80. The mutants described in this work are potential vaccine candidates and can also be used for studies of cell wall biosynthesis and amino acid metabolism.  相似文献   

19.
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram‐negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild‐type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9‐glucose medium but that adding iron restores wild‐type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron‐dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC‐directed export or efflux, to eliminate extraneous physiological effects.  相似文献   

20.
Lactose permease mutants which transport (malto)-oligosaccharides.   总被引:2,自引:0,他引:2       下载免费PDF全文
Lactose permease mutants, which were previously isolated in sugar specificity studies, were screened for their abilities to transport the trisaccharide maltotriose. Six multiple mutants (e.g., five double mutants and one triple mutant) were identified as forming fermentation-positive colonies on maltotriose MacConkey plates and were also shown to grow on maltotriose minimal plates. All of these multiple mutants contained a combination of two or three amino acid substitutions at position 177, 236, 306, or 322 within the permease. In contrast, none of the corresponding single mutants at these locations were observed to exhibit an enhanced rate of maltotriose transport. In whole-cell assays, the multiple mutants were shown to transport relatively long alpha-nitrophenylglucoside (alpha NPG) molecules. In certain cases, alpha NPG molecules containing up to four glucose residues in addition to the nitrophenyl group were shown to be transported to a significant degree. Overall, the abilities of lactose permease mutants to transport maltotriose and long alpha NPGs are discussed with regard to the dimensions of the sugar and the mechanism of sugar transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号