首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt tolerant cell lines have been selected from Medicago sativa, by a single step selection process on tissue culture medium containing 1% NaCl. Plants regenerated from these lines show improved salt tolerance compared to parent plants. The regenerated plants are vigorous, have flowered and are self fertile. The cellular salt tolerance characteristic can be passaged through the regenerated plants, since callus cultures initiated from immature ovaries of the salt tolerant regenerated plants are salt tolerant without additional selection on 1% NaCl. Several of these second generation callus cultures have been regenerated to produce vigorous plants which maintain the salt tolerance characteristic. The tolerance phenotype appears dominant in seeds obtained from self fertilization of the tolerant plants. The regenerated salt tolerant plants are therefore a valuable source as genotypes in plant breeding for salt tolerance and isolation, identification and manipulation of genes which confer salt tolerance in alfalfa.Abbreviations SH Schenk and Hildebrandt medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

2.
Two perchlorate-reducing bacterial consortia (PRBC) were obtained by enrichment cultures from polluted marine sediments. Non-salt-tolerant PRBC (N-PRBC) was enriched without the addition of NaCl, and salt tolerant-PRBC (ST-PRBC) was enriched with 30 g-NaCl L−1. Although the perchlorate reduction rates decreased with increasing NaCl concentration, ST-PRBC (resp., N-PRBC) could reduce perchlorate until 75 g-NaCl L−1 (resp., 30 g-NaCl L−1). The reduction yield (1.34 ± 0.05 mg-perchlorate per mg-acetate) and maximum perchlorate reduction rate (86 mg-perchlorate L−1 h−1) of ST-PRBC was higher than those (1.16 ± 0.03 mg-perchlorate per mg-acetate and 48 mg-perchlorate L−1 h−1) of N-PRBC. Kinetic analysis showed that NaCl acted as an uncompetitive inhibitor against both PRBCs. The inhibition constants were 25 and 41 mg-NaCl L−1 for N-PRBC and ST-PRBC, respectively.  相似文献   

3.
Summary Concentrations of proline, sodium and potassium in shoot tissues of five turfgrass species were measured following exposure to 170 mM NaCl salinity stress. Salt tolerant ‘Fults’ alkaligrass and ‘Dawson’ red fescue restricted the accumulation of Na-ions to significatnly low levels compared to the salt sensitive Kentucky bluegrasses (‘Adelphi’ and ‘Ram I’) and ‘Jamestown’ red fescue. Accumulation of proline began in all species within 24 h of initiation of salt stress but at a more rapid rate and higher overall concentration for ‘Fults’ alkaligrass. Proline levels were variable and too low in relation to sodium accumulations to have any significant osmoregulatory role in salt tolerance among all cultivars tested with the possible exception of alkaligrass.  相似文献   

4.
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K+ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.  相似文献   

5.
6.
A new gene encoding an esterase (designated as EstEP16) was identified from a metagenomic library prepared from a sediment sample collected from a deep-sea hydrothermal field in east Pacific. The open reading frame of this gene encoded 249 amino acid residues. It was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified to homogeneity. The monomeric EstEP16 presented a molecular mass of 51.7 kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding highest specific activity with p-nitrophenyl acetate. When p-nitrophenyl butyrate was used as a substrate, recombinant EstEP16 exhibited highest activity at pH 8.0 and 60 °C. The recombinant enzyme retained about 80% residual activity after incubation at 90 °C for 6 h, which indicated that EstEP16 was thermostable. Homology modeling of EstEP16 was developed with the monoacylglycerol lipase from Bacillus sp. H-257 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of a typical catalytic triad. The activity of EstEP16 was inhibited by addition of phenylmethylsulfonyl fluoride, indicating that it contains serine residue, which plays a key role in the catalytic mechanism.  相似文献   

7.
云南腾冲热泉土壤微生物基因组文库的构建与分析   总被引:9,自引:0,他引:9  
采用冻融、蛋白酶K、SDS-高盐-加热处理法联合的方法,直接从云南腾冲地区的一个弱碱性高温热泉沉积样品中提取和分离环境混合基因组DNA,产量为每克样品1~2μg DNA,用Promega试剂盒纯化后进行PstⅠ部分酶切处理,电泳回收3~8kb的片段后,构建了pSK( )为载体的基因组文库,共获得25000个阳性克隆,平均插入片段长度为4.6kb。通过随机DNA序列测定和基因注释,发现外源插入片段含有未见报道的序列。  相似文献   

8.
A metagenomic library was constructed using total genomic DNA extracted from the mud in the west coast of Korea and was used together with a fosmid vector, pCC1FOS in order to uncover novel gene sources. One clone from approximately 30,000 recombinant Escherichia coli clones was identified that showed proteolytic activity. The gene for the proteolytic enzyme was subcloned into pUC19 and sequenced, and a database search for homologies revealed it to be a zinc-dependent metalloprotease. The cloned gene included the intact coding gene for a novel metalloproteinase and its own promoter. It comprised an open reading frame of 1,080 base pairs, which encodes a protein of 39,490 Da consisting of 359 amino acid residues. A His-Glu-X-X-His sequence, which is a conserved sequence in the active site of zinc-dependent metalloproteases, was found in the deduced amino acid sequence of the gene, suggesting that the enzyme is a zinc-dependent metalloprotease. The purified enzyme showed optimal activity at 50°C for 1 h and pH 7.0. The enzyme activity was inhibited by metal-chelating reagents, such as EDTA, EGTA and 1,10-phenanthroline. The enzyme hydrolyzed azocasein as well as fibrin. Thus, the enzyme could be useful as a therapeutic agent to treat thrombosis. The sequence reported in this paper has been deposited in the GenBank database (Accession number: EF100137).  相似文献   

9.
10.
元基因组文库分析技术研究进展   总被引:2,自引:0,他引:2  
李武  赵勇  王玉炯 《生态学报》2007,27(5):2070-2076
随着新的分析技术的不断出现和成熟,促进了微生物分子生态学及相关学科的诞生和迅速发展。其中,元基因组文库分析技术即是近年来微生物分子生态学研究领域兴起的一种新的分析技术。就元基因组分析技术诞生的背景及该技术的原理进行了讨论,着重阐述了元基因组文库分析技术在寻找新基因、开发新的生物活性物质、研究群落中微生物多样性、人类元基因组测序等方面的应用。另外,归纳总结了目前国际上常用的诸如PCR为基础的筛选、荧光原位杂交(fluorescent in situ hybridization,FISH)、底物诱导的基因表达筛选(substrate induced gene expression screening,SIGEX)、基因芯片等元基因组文库筛选方法,并就不同方法的优缺点进行了分析和讨论,指出了目前元基因组文库分析技术存在的主要问题并对今后该技术的发展进行了展望。  相似文献   

11.
《遗传学报》2022,49(8):766-775
Salt stress adversely affects plant growth, development, and crop yield. Rice (Oryza sativa L.) is one of the most salt-sensitive cereal crops, especially at the early seedling stage. Mitogen-activated protein kinase (MAPK/MPK) cascades have been shown to play critical roles in salt response in Arabidopsis. However, the roles of the MPK cascade signaling in rice salt response and substrates of OsMPK remain largely unknown. Here, we report that the salt-induced OsMPK4-Ideal Plant Architecture 1 (IPA1) signaling pathway regulates the salt tolerance in rice. Under salt stress, OsMPK4 could interact with IPA1 and phosphorylate IPA1 at Thr180, leading to degradation of IPA1. Genetic evidence shows that IPA1 is a negative regulator of salt tolerance in rice, whereas OsMPK4 promotes salt response in an IPA1-dependent manner. Taken together, our results uncover an OsMPK4-IPA1 signal cascade that modulates the salt stress response in rice and sheds new light on the breeding of salt-tolerant rice varieties.  相似文献   

12.
Summary The response of plant cells to salt stress was studied on embryo derived calli of rice (Oryza sativa L.) in order to identify cellular phenotypes associated with the stress. The feasability of selecting salt tolerant callus and its subsequent regeneration to plants was also studied. Callus was grown on agar-solidified media containing 0%, 1% and 2% (w/v) NaCl for 24 days. Parameters such as fresh weight, dry weight, soluble protein and proline content were measured. The callus growth decreased markedly with increasing NaCl concentration in the medium. The proline content was enhanced several fold in salt stressed calli. A prolonged exposure of callus to the salt environment led to discolouration and arrested growth in the majority of the calli and only a small number of callus cells maintained healthy and stable growth. These variants were subcultured every three weeks for a period of four months onto medium containing 1% NaCl to identify tolerant lines. At the end of the third cell passage, the tolerant calli were transferred to regeneration medium to regenerate plants. The regeneration frequency in the salt-selected lines was enhanced when compared to unselected lines.  相似文献   

13.
RFLP tagging of a salt tolerance gene in rice   总被引:10,自引:0,他引:10  
A salt tolerant rice mutant (M-20) was obtained through selection in vitro. Its tolerance was stably inherited over eight generations and most traints between M-20 and its sensitive original 77–170 (Oryza sativa) were very similar. By deriving an F2 population of M-20 × 77–170 and splitting every F2 individual into two parts, with one part planted in normal conditions and another part in saline conditions, the inheritance of salt tolerance in rice was studied. Under normal conditions, there was no apparent segregation among F2 individuals. Under saline conditions, however, the segregation of traits was obvious. According to our standards, the ratio of salt sensitive:moderately-tolerant:tolerant plants was 25:42:18, in accordance with a 1:2:1 ratio. It suggested that the improvement of salt tolerance in our materials was induced by the mutation of a major tolerant gene which showed incomplete dominance. By use of 130 RFLP probes distributed throughout the rice genome, the gene was tagged by a single copy DNA probe, RG4, which was located on chromosome 7. The genetic distance between the salt tolerant gene and RG4 was 7.0 ± 2.9 cM. Based on the split method, a method which could be currently used to evaluate the damage of salt stress in rice was proposed.  相似文献   

14.
耐盐酶在高盐浓度下仍具备催化活性和稳定性,在高盐食品和海产品加工、洗涤及其它高盐环境生物技术领域被广泛应用;耐盐基因在高盐条件下可以使微生物维持正常功能,获取并研究不同环境中的耐盐基因对揭示微生物的耐盐机制,以及实现其在高盐环境中的定向应用具有的重要意义。宏基因组学避开纯培养技术探知微生物的多样性及其功能,为我们提供了一种发现新基因、开发新的微生物活性物质和研究微生物群落结构及其功能的新技术。文中结合本课题组的研究工作,综述了利用宏基因组学获取耐盐酶类及耐盐基因的策略,同时着重介绍利用宏基因组学从海洋、土壤、胃肠道等环境中获取耐盐酶类及耐盐基因的研究。  相似文献   

15.
在籼稻品种R401辐射诱变的M2群体中筛选到一个苗期耐盐突变体, 在150 mmol/L的NaCl溶液处理下对照植株枯萎死亡, 而突变体植株依然存活。以粳稻品种Nipponbare(不耐盐)和耐盐突变体作亲本, 构建了一个F2群体, 调查该群体在150 mmol/L的NaCl溶液胁迫下的表现, 发现Nipponbare和耐盐突变体苗期耐盐性的差异受单个主基因控制, 耐盐为隐性, 将该基因暂时命名为SST(t)。利用该F2群体, 采用集团分离分析(Bulked segregant analysis, BSA)法将SST(t)定位在第6染色体上, 进一步对F2群体中137个典型的耐盐单株的分子标记进行分析, 将该基因定位在InDel标记ID26847和ID27253之间, 约2.3 cM (或406 kb)的区间内, 与两标记分别相距1.2 cM和1.1 cM。  相似文献   

16.
A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30 KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0 °Cand the optimal activity at pH 8.0 and 30 °C with good thermostability and quickened inactivation above 60 °C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications.  相似文献   

17.
18.
Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na+/H+ reverse transporter gene (NHX1) and the vacuolar H+-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na+/H+ reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa.  相似文献   

19.
Principles and strategies in breeding for higher salt tolerance   总被引:1,自引:0,他引:1  
M. C. Shannon 《Plant and Soil》1985,89(1-3):227-241
Summary Salinity is an environmental component that usually reduces yield. Recent advances in the understanding of salt effects on plants have not revealed a reliable physiological or biochemical marker that can be used to rapidly screen for salt tolerance. The necessity of measuring salt tolerance based upon growth in saline relative to non-saline environments makes salt tolerance measurements and selection for tolerance difficult. Additionally, high variability in soil salinity and environmental interactions makes it questionable whether breeding should be conducted for tolerance or for high yield. Genetic techniques can be used to identify the components of variation attributable to genotype and environment, and the extent of genetic variation in saline and nonsaline environments can be used to estimate the potential for improving salt tolerance. Absolute salt tolerance can be improved best by increasing both absolute yield and relative salt tolerance.  相似文献   

20.
Salinity is one of the major agricultural concern that significantly limits the crop productivity. The plant growth promoting rhizobacteria (PGPR) may contribute in sustainable crop production under salt stress. The current study was designed to isolate the Indole Acetic Acid (IAA) producing salt tolerant PGPR to promote the growth of cotton (Gossypium hirsutum, FH-142) and induce its salt stress tolerance. Ten Salt Tolerant (ST) bacterial strains were screened for their PGP trait in vitro and evaluated for their beneficial effect on cotton plants growth by plant–microbe interaction assay in lab and under natural condition. GC–MS analysis of the metabolites of the selected bacterial strains confirmed the presence of indolic compounds like indole, indole-3-butyramide, benzylmalonic acid and 4-methyl-2-pyrrolidinone. The bacterial isolates ST4, ST5, ST6, ST15, ST16, ST17, ST18, ST20, ST22 and ST25 were identified as Bacillus sp., B. sonorensis, B. cereus, B. subtilis, Brevibacillus sp. B. safensis, B. paramycoides, Bacillus sp., B. cereus and B. tequilensis respectively on the basis of 16S rDNA sequencing. Bacteria inoculated plants had a significant (P < 0.05) increase in percentage germination up to (31%), root length (17%) and shoot length (34%) in lab while in wire house pot experiments, maximum enhancement in root length (31%) and shoot length (29%) was observed. ST bacterial strains inoculation improved the chlorophyll content index (34%), relative water content (36%), leaf area (33%), absorption of K+ (28%) and decreased the uptake of Na+ (58%) from soil in plants under salt stress over control in pot experiment. These ST PGPR have the potential to act as plant defense agents by enhancing plant growth, productivity, and tolerance in saline environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号