首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

2.
Our previous research has shown that the Ca2+-dependent protease within platelets is activated when platelets aggregate, resulting in the production of three polypeptides (Mr = 200,000, 100,000, and 91,000). We have now shown that these three polypeptides arise from the hydrolysis of actin-binding protein. An antibody against actin-binding protein raised in rabbits was shown to be specific for actin-binding protein on immunoblots of total platelet proteins. This antibody reacted with additional polypeptides of Mr = 200,000, 100,000, and 91,000 on immunoblots of the proteins of thrombin-activated platelets. Actin-binding protein was purified from fresh, human platelet concentrate and hydrolyzed with platelet-derived Ca2+-dependent protease; hydrolysis resulted in the appearance of three polypeptides with molecular weights and isoelectric points identical to those of the three polypeptides generated within intact, aggregating platelets. Production of these polypeptides was inhibited by leupeptin and by the chelation of Ca2+. Hydrolysis of actin-binding protein was observed at micromolar Ca2+ concentrations, demonstrating that the level of Ca2+ in aggregated platelets is sufficient to account for the hydrolysis of actin-binding protein by the Ca2+-dependent protease. P235 was also purified and tested for its susceptibility to the protease. It was hydrolyzed by the Ca2+-dependent protease, and two polypeptides (Mr = 200,000 and 46,000) were produced. Antibodies against P235 raised in rabbits reacted only with P235 on immunoblots of total platelet proteins. These antibodies also reacted with polypeptides of Mr = 200,000 and 46,000 on immunoblots of thrombin-activated platelets. These data show that both actin-binding protein and P235 are cleaved during thrombin-induced platelet aggregation and suggest that the activation of the Ca2+-dependent protease may permit reorganization of the platelet cytoskeleton in aggregating platelets.  相似文献   

3.
Calcium-dependent proteolysis occurs during platelet aggregation   总被引:18,自引:0,他引:18  
Control and stimulated platelets were analyzed by two-dimensional polyacrylamide gel electrophoresis to determine whether proteins are altered during platelet activation. Platelets were stimulated with thrombin, collagen, or the calcium ionophore A23187, and aggregation was brought about by stirring in the presence of Ca2+. These activated platelets contained at least three polypeptides not found in control platelets: 1) Mr = 200,000, pI between 6.2 and 6.4; 2) Mr = 100,000, pI = 6.3; and 3) Mr = 91,000, pI = 6.1. An additional polypeptide, polypeptide 4, with Mr = 97,000 and pI = 5.9, was present only in platelets activated by thrombin. When aggregation was prevented, either by adding 5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to the platelet suspension or by incubating the platelet suspension without stirring, polypeptides 1-3 were not formed. Partial hydrolysis of polypeptides 2 and 4 with Staphylococcus aureus V8 protease yielded distinct sets of peptide hydrolytic fragments. These differed from those produced by the hydrolysis of alpha-actinin, a major platelet protein, which has a molecular weight similar to polypeptides 2 and 4. Polypeptides 1-3 were also produced during incubation of platelet lysates in the presence of Ca2+. Generation of these polypeptides in lysates was prevented either by chelation of Ca2+ with EGTA or by the addition of N-ethylmaleimide, leupeptin, or mersalyl, inhibitors of the calcium-dependent protease. These data show that the calcium-dependent protease is activated during aggregation of platelets by physiological agents and suggest that this protease could have a role in platelet response to stimulation.  相似文献   

4.
To assess the possibility that hydrolysis of the platelet surface thrombin substrate, glycoprotein V, is a necessary step in thrombin-induced platelet activation, thrombin-catalyzed hydrolysis of glycoprotein V was correlated with thrombin-induced platelet activation. Hydrolysis of tritium-labeled glycoprotein V on washed human platelets was measured by the appearance of a labeled supernatant fragment, and platelet activation was measured as secretion of ATP. Hydrolysis of glycoprotein V was linear with respect to both thrombin concentration and time of incubation. The extent of platelet activation was correlated with the rate of hydrolysis but not with the amount hydrolyzed. Maximum platelet activation could be obtained with thrombin treatments resulting in hydrolysis of as little as 4% of glycoprotein V per min. Glycoprotein V was partially removed from platelets by pretreatment with either platelet calcium-dependent protease or chymotrypsin. The rate of thrombin-catalyzed hydrolysis of the remaining glycoprotein V from these pretreated platelets was as little as 1.5% the rate from control platelets, but there was no impairment of the extent of platelet activation. Thus, these protease-pretreated platelets compared with control platelets showed a different correlation of glycoprotein V hydrolysis with platelet activation. Glycoprotein V was also partially removed by pretreatment of prostacyclin-inhibited platelets with thrombin. After removal of thrombin and prostacyclin, these platelets were desensitized to subsequent activation by thrombin. Incubation of desensitized platelets with nonsaturating levels of thrombin led to less than 25% of the activation seen with control platelets but to a slightly greater hydrolysis of glycoprotein V. Thus, the desensitization to thrombin was not due to loss of ability of the activating thrombin to hydrolyze glycoprotein V. These results do not exclude a role for glycoprotein V as a component of the platelet thrombin receptor, but they indicate that there is no simple relationship between thrombin-induced hydrolysis of glycoprotein V and platelet activation.  相似文献   

5.
M Peng  W Lu  E P Kirby 《Biochemistry》1991,30(49):11529-11536
A new protein, called alboaggregin-B (AL-B), has been isolated from Trimeresurus albolabris venom by ion-exchange chromatography. It agglutinated platelets without the need for Ca2+ or any other cofactor. The purified protein showed an apparent molecular mass on SDS-PAGE and gel filtration of about 23 kDa under nonreducing conditions. Ristocetin did not alter the binding of AL-B to platelets or affect AL-B-induced platelet agglutination. Agglutinating activity was not dependent on either proteolytic or lectin-like activity in AL-B. Binding analysis showed that AL-B bound to platelets with high affinity (Kd = 13.6 +/- 9.3 nM) at approximately 30,800 +/- 14,300 binding sites per platelet. AL-B inhibited the binding of labeled bovine von Willebrand factor (vWF) to platelets. Monoclonal antibodies against the 45-kDa N-terminal domain of platelet glycoprotein Ib inhibited the binding both of AL-B and of bovine vWF to platelets, and also inhibited platelet agglutination induced by AL-B and bovine vWF. Specific removal of the N-terminal domain of GPIb by treatment of the platelets with elastase or Serratia marcescens protease reduced the binding of labeled AL-B and bovine vWF to platelets and blocked platelet agglutination caused by both agonists. Monoclonal antibodies to glycoprotein IIb/IIIa, to bovine vWF, and to bovine serum albumin did not show any effect on the binding of AL-B to platelets. Our results indicate that the binding domain for AL-B on platelet GPIb is close to or identical with the one for vWF. This new protein may be a very useful tool for studying the interaction between platelets and vWF.  相似文献   

6.
Characterization of the platelet agglutinating activity of thrombospondin   总被引:6,自引:0,他引:6  
Thrombospondin (TSP) is a glycoprotein secreted from the alpha-granules of platelets upon activation. In the presence of divalent cations, the secreted protein binds to the surface of the activated platelets and is responsible for the endogenous lectin-like activity associated with activated platelets. Platelets fixed with formaldehyde following activation by thrombin are agglutinated by exogenously added TSP. Fixed, nonactivated platelets are not agglutinated. The platelet agglutinating activity of TSP is optimally expressed in the presence of 2 mM each of Mg2+ and Ca2+. Reduction of the disulfide bonds within the TSP molecule inhibits its platelet agglutinating activity. TSP bound to the surface of fixed, activated platelets can be eluted by the addition of disodium ethylenediaminetetraacetate. This approach was exploited to identify the region of the TSP molecule containing the platelet binding site. The binding site resides within a thermolytic fragment of TSP with Mr 140 000 but is not present in the Mr 120 000 fragment derived from the polypeptide of Mr 140 000. Since both the Mr 140 000 and 120 000 fragments contain fibrinogen binding sites, this finding suggests that the binding of TSP to the platelet surface requires interaction with other platelet surface components in addition to fibrinogen. The observation that fibrinogen only partially inhibits the TSP-mediated agglutination of fixed, activated platelets is consistent with this interpretation.  相似文献   

7.
Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  相似文献   

8.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

9.
Glycoprotein IIIb (also known as glycoprotein IV) is a major glycoprotein present on the surface of human platelets. Recent studies suggest that glycoprotein IIIb may be a receptor site for thrombospondin. Thrombospondin, a multifunctional adhesive glycoprotein released from stimulated platelets, plays an important role in the stabilization of platelet aggregates. In this study, a new method for the purification of glycoprotein IIIb is described. Glycoprotein IIIb was isolated from Triton X-114 platelet membrane extracts, under nondenaturing conditions, by tandem anion-exchange and size exclusion fast protein liquid chromatography. The purified glycoprotein had the same apparent molecular mass (88 kDa) under nonreducing or reducing conditions. The tryptic peptide map of the purified protein was identical to that of bona fide glycoprotein IIIb as isolated from two-dimensional polyacrylamide gels of platelet membrane proteins. In addition, the purified glycoprotein was recognized by an anti-GPIIIb monoclonal antibody (OKM5). The purified glycoprotein specifically bound to thrombospondin in the presence of calcium. Monospecific anti-GPIIIb antibodies interfered with the expression of endogenous thrombospondin on thrombin-activated platelets and partially inhibited collagen- and thrombin-induced platelet aggregation without a significant effect on platelet secretion. Glycoprotein IIIb, by interacting with thrombospondin on the activated platelet surface, may play an important role in the platelet aggregation process.  相似文献   

10.
The effects of organic and inorganic calcium antagonists on washed platelets from rat and human have been studied. Platelet aggregation was assessed by turbidimetry. Endogenous serotonin release was measured on the same sample by means of electrochemically treated carbon fiber electrodes. The organic calcium antagonist, nitrendipine, and the inorganic calcium channel blockers (Co2+, Mn2+, Cd2+, La3+) drastically inhibited rat and human platelet aggregation induced by thrombin, ADP or adrenaline in the presence of 0.32 mM Ca2+. In our conditions, the thrombin-induced release of endogenous serotonin was found to be external Ca2+-dependent and completely inhibited by 20 microM nitrendipine or 1 mM Cd2+. In addition, Ba2+ or Sr2+ ions can be substituted for Ca2+ to bring about platelet aggregation as well as endogenous serotonin secretion. In Ba2+ or Sr2+-containing media, rat platelet aggregation and/or serotonin secretion can be inhibited by either nitrendipine or Cd2+. Finally, we have also studied the thrombin- and external Ca2+-dependence of radiolabeled calcium uptake by rat platelets. We found that the thrombin-induced 45Ca uptake was inhibited by either 18 microM nitrendipine or 1 mM Cd2+. These results provide strong evidence for the existence of an influx of divalent cations (Ca2+, Sr2+, Ba2+) triggering platelet function. They also suggest, although they do not prove, that the translocation of these cations occurs through an agonist-operated channel as proposed by Hallam and Rink (FEBS Lett. 186 (1986) 175-179).  相似文献   

11.
By means of CM-Sephadex C-50 column chromatography and gel filtration on Sephadex G-75 and G-50 columns, a potent platelet aggregation inhibitor was purified and characterized. It was a glycoprotein with a molecular weight of 31,000. It was devoid of phospholipase A, ADPase, esterase and fibrino(geno)lytic activities. It inhibited dose-dependently the aggregation of washed platelets induced by collagen, thrombin, sodium arachidonate, platelet activating factor and ionophore A23187 with a similar IC50 (5-10 micrograms/ml). It was also active in platelet-rich plasma, with an IC50 of 10-15 micrograms/ml. The venom inhibitor reduced the elasticity of whole blood clot and inhibited the thrombin-induced clot retraction of platelet-rich plasma. These activities were related to its inhibitory activity on platelet aggregation rather than blood coagulation. The venom inhibitor had various effects on [14C]serotonin release stimulated by aggregation agonists. It had no effect on thromboxane B2 formation of platelets stimulated by sodium arachidonate, collagen and ionophore A23187. The presence of this venom inhibitor prior to the initiation of aggregation was a prerequisite for the maintenance of its maximal activity. It showed a similar inhibitory effect on collagen or thrombin-induced aggregation even when it was added after the platelets had undergone the shape change. High fibrinogen levels partially antagonized its activity. The venom inhibitor completely inhibited the fibrinogen-induced aggregation of alpha-chymotrypsin-treated platelets. It is concluded that this venom inhibitor interferes with the interaction of fibrinogen with fibrinogen receptors, leading to inhibition of aggregation.  相似文献   

12.
It has recently been reported that alphaB-crystallin, a low-molecular-weight heat shock protein, may be released from cells by mechanical stretch. We investigated a physiological role of alphaB-crystallin in platelet function. AlphaB-crystallin inhibited platelet aggregation induced by thrombin or botrocetin in hamsters and humans. These platelets had specific binding sites for alphaB-crystallin. Moreover, alphaB-crystallin significantly reduced thrombin-induced Ca2+ influx and phosphoinositide hydrolysis by phospholipase C in human platelets. Additionally, plasma levels of alphaB-crystallin were markedly elevated in cardiomyopathic hamsters. Levels of alphaB-crystallin in vessel walls after endothelial injury were markedly reduced. Therefore, our results suggest that alphaB-crystallin, which is discharged from vessel walls in response to endothelial injury, acts intercellularly as a regulator of platelet function.  相似文献   

13.
A calcium-activated neutral protease (CANP) has been purified 2,800 fold, to near homogeneity, from human platelets. The purification procedure involved ammonium sulfate fractionation of the platelet cytosol followed by chromatography on Sephacryl S-200, DEAE-Sephacel, Agarose-Hexylamine, Agarose-Octylamine and alpha-casein-Sepharose 4B affinity gel. The protease consisted of two polypeptides of Mr = 74,000 and 28,000 as judged on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It hydrolyzed [methyl-14C] alpha-casein at a significant rate of 37 degrees C which was, therefore, used as an exogenous substrate. Microtubules and intermediate filament proteins were also susceptible to hydrolysis by the purified protease. It attained maximum activity at 0.06 uM CaCl2 and displayed two pH maxima: one at 5.5 and the other at 6.5. The protease was fully active in the presence of MnCl2 and was about 75% active with BaCl2 and SrCl2. Among the actinomycete protease inhibitors, leupeptin, antipain and pepstatin, the order of inhibition was: leupeptin greater than antipain greater than pepstatin. The protease was also inhibited by sulfhydryl modifying agents.  相似文献   

14.
Human platelet membrane glycoproteins IIb and III are two major integral membrane components that have been identified as sites mediating thrombin-induced aggregation. For purposes of our study, glycoproteins IIb and III were solubilized by extracting platelet plasma membranes with a buffer containing 0.1% Triton X-100 and were separated by gel filtration chromatography on Sephacryl S-300, employing Triton X-100-containing column buffers with or without urea or guanidine hydrochloride. The physical properties of the purified glycoproteins were: for glycoprotein IIb, Rs = 61 A, s20.w = 4.7, f/f0 = 1.7, Mr = 125,000 (hydrodynamic values), Mr = 136,000 (sodium dodecyl sulfate gels); for glycoprotein III, Rs = 67 A, s20,w = 3.2 f/f0 = 2.1, Mr = 93,000 (hydrodynamic values), Mr = 95,000 (sodium dodecyl sulfate gels). Although the amino acid compositions of the two glycoproteins were similar, antibodies raised against glycoprotein IIb did not crossreact with glycoprotein III. If divalent cations were not chelated in the Triton extract, glycoproteins IIb and III coeluted during gel filtration chromatography (apparent Stokes radius of 71 A) and co-sedimented on sucrose gradients (apparent s20.w of 8.6), from which Mr = 265,000 was calculated. Glycoproteins IIb and III were coprecipitated by an antibody monospecific for glycoprotein IIb. The two glycoproteins dissociated into monomers when EDTA was added to Triton lysates. Readdition of Ca2+ caused them to reassociate into a complex with physical properties similar to those of the complex in the original Triton lysate. The data show that glycoproteins IIb and III are a heterodimer complex, that complex formation depends upon the presence of Ca2+, and that chelation of Ca2+ causes dissociation into monomeric glycoproteins.  相似文献   

15.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.  相似文献   

16.
Human platelet agonists such as thrombin, ADP, and collagen stimulate the rapid expression of fibrinogen receptors. In other cell types, calcium-activated proteases have been suggested to participate in the mechanism of expression of cell surface receptors (Lynch, G., and Baudry, M. (1984) Science 224, 1057-1063). In platelets the majority of the neutral protease activity is calcium-activated protease. We examined the effects of leupeptin and antipain, two calcium-activated protease inhibitors, on the expression of platelet fibrinogen receptors. These inhibitors abolished thrombin and ADP-induced fibrinogen binding. This inhibition required the addition of leupeptin or antipain prior to the agonist and was not due to displacement of fibrinogen from its receptor or inhibition of agonist binding to platelets. Leupeptin and antipain also inhibited fibrinogen-independent thrombin-stimulated release of serotonin. These results are discussed in relation to the involvement of calcium-activated protease in early events of platelet activation.  相似文献   

17.
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate hemostasis of victims through effects on platelets, vascular endothelial, and smooth muscle cells. In this study, we have isolated and functionally characterized a snaclec that we named "rhinocetin" from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13 kDa, respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in a dose-dependent manner but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP-, or thrombin-induced platelet activation. Rhinocetin antagonized the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen-induced platelet functions such as fibrinogen binding, calcium mobilization, granule secretion, aggregation, and thrombus formation. It also inhibited integrin α2β1-dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios, including hemostasis, thrombosis, and envenomation.  相似文献   

18.
T Ohmori  Y Yatomi  Y Wu  M Osada  K Satoh  Y Ozaki 《Biochemistry》2001,40(43):12992-13001
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130K transmembrane glycoprotein that belongs to the immunoglobulin gene superfamily and is expressed on the surface of hematological or vascular cells, including platelets and endothelial cells. Although the importance of this adhesion molecule in various cell-cell interactions is established, its function in platelets remains ill-defined. In the process of clarifying the mechanism by which the lectin wheat germ agglutinin (WGA) activates platelets, we unexpectedly discovered that PECAM-1 is involved in signal transduction pathways elicited by this N-acetyl-D-glucosamine (NAGlu)-reactive lectin. WGA, which is a very potent platelet stimulator, elicited a rapid surge in Syk and phospholipase C (PLC)-gamma 2 tyrosine phosphorylation and the resultant intracellular Ca(2+) mobilization; collagen, as reported, induced these responses, but in a much slower and weaker manner. WGA strongly induced tyrosine phosphorylation of a 130-140K protein, which was confirmed to be PECAM-1 by immunoprecipitation and immunodepletion studies. WGA-induced PECAM-1 tyrosine phosphorylation occurred rapidly, strongly and in a manner independent of platelet aggregation or cell-cell contact; these characteristics of PECAM-1 phosphorylation were not mimicked at all by receptor-mediated platelet agonists. In addition, WGA was found to associate with PECAM-1 itself, and anti-PECAM-1 antibody, as well as NAGlu, specifically inhibited WGA-induced platelet aggregation. In PECAM-1 immunoprecipitates, Src family tyrosine kinases existed, and a kinase activity was detected, which increased upon WGA stimulation. Furthermore, the Src family kinase inhibitor PP2 inhibited WGA-induced platelet aggregation, Ca(2+) mobilization, and PLC-gamma 2 tyrosine phosphorylation. Finally, WGA induced PECAM-1 tyrosine phosphorylation and cytoskeletal reorganization in vascular endothelial cells. Our results suggest that (i) PECAM-1 is involved in WGA-induced platelet activation, (ii) PECAM-1 clustering by WGA activates unique and strong platelet signaling pathways, leading to a rapid PLC activation via Src family kinases, and (iii) WGA is a useful tool for elucidating PECAM-1-mediated signaling with wide implications not confined to platelets.  相似文献   

19.
Isolation of human platelet glycoproteins.   总被引:1,自引:0,他引:1  
Human platelet glycoproteins were isolated from whole platelets by two methods. The first method, that of affinity chromatography on wheat germ agglutinin, is based on the known affinity of lectins for cell surface glycoproteins. When solubilized whole platelets are used as starting material for this procedure, elution with N-acetylglucosamine yields primarily a glycoprotein of Mr approximately 150 000 as estimated by sodium dodecyl sulfate-acrylamide gel electrophoresis. The second method is based on the ability of the chaotropic salt lithium diiodosalicylate to extract glycoprotein from particulate cell fractions in water-soluble form. This method yields three major glycopeptides with apparent molecular weights after sulfhydryl reduction of 145 000, 125 000, and 95 000 as estimated on 5.6% sodium dodecyl sulfate-acrylamide gels. Carboxymethylation of these preparations in the presence of sulfhydryl-reducing agent further resolves a glycoprotein of Mr approximately 165 000. Treatment of whole platelets by periodate oxidation and sodium[3H]-borohydride reduction labels the three major glycoproteins extracted by lithium diiodosalicylate and the glycoprotein of Mr approximately 150 000 isolated on wheat germ agglutinin confirming their surface orientation. However, glycoprotein with Mr approximately 165 000 resolved by carboxymethylation of the lithium diiodosalicylate extracted glycoprotein mixture was not labelled by this method, suggesting that it represents the granule protein with similar electrophoretic characteristics described by others. Phosphorylation of intact platelets with 32Pi also results in labelling of glycoproteins isolated by both methods, suggesting that these molecules traverse the bilipid layer of the platelet membrane, bearing reactive groups on both outer and cytoplasmic surfaces.  相似文献   

20.
epsilon-Aminocaproic acid (EACA) is a synthetic low molecular drug with antifibrinolytic activity. However, treatment with this drug can be incidentally associated with an increased thrombotic tendency. The aim of the present work was to test synthetic EACA derivatives for their antiplatelet activities. We investigated the effect of three EACA derivatives with antifibrinolytic activity: I. epsilon-aminocaproyl-L-leucine hydrochloride (HClH-EACA-L-Leu-OH), II. epsilon-aminocaproyl-L-(S-benzyl)-cysteine hydrochloride (HClH-EACA-L-Cys(S-Bzl)-OH) and III. epsilon-aminocaproyl-L-norleucine (H-EACA-L-Nle-OH) on platelet responses (aggregation and adhesion) and on their integrity. It was found that: 1. as judged by LDH release test, none of the tested compounds, up to 20 mM, was toxic to platelets, 2. in comparison with EACA, all the synthetic derivatives inhibited much stronger the ADP- and collagen-induced aggregation of platelets suspended in plasma (platelet rich plasma) and aggregation of these cells in whole blood, 3. EACA and its derivatives exerted a similar inhibitory effect on the thrombin-induced adhesion of platelets to fibrinogen-coated surfaces. Since platelet activation and blood coagulation are tightly associated processes, the antiplatelet properties of EACA derivatives are expected to indicate reduced thrombotic properties of these derivatives compared to EACA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号