首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The level of cyt.p-450 in the D7 strain of the yeast S.cerevisiae depended on the substrate supporting the growth, on its concentration, on the starting inoculated number of cells. (1) In the yeast grown on D-mannose where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. It was detected a maximal concentration during the logarithmic phase when in the cultures there are about 50 . 10(6) cell/ml. We use cells harvested at this moment of the growth for mutagenesis tests. The tested substances were dimethylnitrosamine and styrene. DMNA to probe the sensibility of our cells and styrene that has always given contrasting results but from which the formation is known of genetically active metabolite: styrene oxide(6-7). Styrene gave positive results with our metabolizing yeast cells.  相似文献   

2.
Effects of six thiol reagents with different physico-chemical properties were tested on the Na+-dependent 45Ca2+ transport into the rat brain microsomal membrane vesicles. The mercurials p-chlormercuribenzoate and Mersalyl effectively inhibited 45Ca2+ uptake with IC50 values in the order of 10(-4) mol X l-1 in the medium. N-ethylmaleimide and its more lipophilic analog N-(4-(2-benzoxazolyl)phenyl)maleimide were much less effective at the same concentrations. 2,2'-dithiodipyridine markedly reduced 45Ca2+ uptake already at concentrations below 10(-4) mol X l-1, whereas 5,5'-dithiobis-2-nitrobenzoate in a concentration range 10(-6)-10(-3) mol X l-1 was a weak inhibitor. Inhibitory effects of the most potent inhibitors p-chlormercuribenzoate and 2,2'-dithiodipyridine were readily reversed by 1 mmol X l-1 dithiothreitol. The results suggest that free SH groups of membrane polypeptides are involved in the functioning of the Na+-Ca2+ exchanger in the nerve tissue cell membranes.  相似文献   

3.
Kantz A  Gassner GT 《Biochemistry》2011,50(4):523-532
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of an NADH-specific flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA). NSMOA binds tightly to reduced FAD and catalyzes the stereospecific addition of one atom of molecular oxygen to the vinyl side chain of styrene in the enantioselective synthesis of S-styrene oxide. In this mechanism, molecular oxygen first reacts with NSMOA(FAD(red)) to yield an FAD C(4a)-peroxide intermediate. This species is nonfluorescent and has an absorbance maximum of 382 nm. Styrene then reacts with the peroxide intermediate with a second-order rate constant of (2.6 ± 0.1) × 10(6) M(-1) s(-1) to yield a fluorescent intermediate with an absorbance maximum of 368 nm. We compute an activation free energy of 8.7 kcal/mol for the oxygenation step, in good agreement with that expected for a peroxide-catalyzed epoxidation, and acid-quenched samples recovered at defined time points in the single-turnover reaction indicate that styrene oxide synthesis is coincident with the formation phase of the fluorescent intermediate. These findings support FAD C(4a)-peroxide being the oxygen atom donor and the identity of the fluorescent intermediate as an FAD C(4a)-hydroxide product of the styrene epoxidation. Overall, four pH-dependent rate constants corresponding to peroxyflavin formation (pK(a) = 7.2), styrene epoxidation (pK(a) = 7.7), styrene oxide dissociation (pK(a) = 8.3), and hydroxyflavin dehydration (pK(a) = 7.6) are needed to fit the single-turnover kinetics.  相似文献   

4.
Styrene and its metabolite styrene oxide were tested for their ability to induce sister chromatid exchanges (SCE) in CHO cells. Styrene oxide appeared to be a potent inducer of SCE. Styrene itself did not increase the number of SCE per metaphase, even in the presence of a metabolic activation system. The metabolic activation system decreased the SCE induction caused by styrene oxide. Induction of SCE by styrene in the presence of metabolic activation occurred when cyclohexene oxide was used as an inhibitor of the enzyme epoxide hydrase.  相似文献   

5.
Two vinyl monomers, styrene and vinylacetate, were tested for their ability to induce chromosome aberrations in cultured human lymphocytes. The effects of a 24-h treatment (48 h after culture initiation) were studied both in whole-blood cultures (with 2 X 10(8) erythrocytes/ml) and in isolated lymphocytes (with 4000 erythrocytes/ml). Styrene produced a clear dose-dependent increase in chromatid-type aberrations in whole-blood cultures (0.5-6 mM) and a weaker effect in cultures of isolated lymphocytes (1-4 mM). A statistically significant elevation in aberrations was observed at 2 mM in the former culture type and at 1 mM in the latter. These results support earlier studies on the importance of erythrocytes in the metabolic activation of styrene, but also suggest that a part of this activation occurs in the lymphocytes themselves. Vinylacetate (0.125-2 mM), the more potent clastogen of the two monomers tested, induced a distinct dose-dependent increase in chromatid-type aberrations and a slight elevation in chromosome-type breaks in both culture types. The lowest concentration giving a positive result was 0.25 mM. The clastogenic effects of vinylacetate were somewhat more pronounced in isolated lymphocytes than in whole blood. Vinylacetate is known to be rapidly hydrolyzed in vitro to acetaldehyde, which probably explains the positive result.  相似文献   

6.
J P Klinman 《Biochemistry》1975,14(12):2568-2574
Yeast alcohol dehydrogenase is inactivated and alkylated by styrene oxide in a single exponential kinetic process. The concentration dependence of half-times for inactivation indicates the formation of an enzyme inhibitor complex, KI = 2.5 times 10(-2) M at pH 8.0. Reduced nicotinamide adenine dinucleotide (NADH), at a concentration of 3 times 10(-4) M where Kd congruent to 1 times 10(-5) M, has a small effect on kinetic parameters for inactivation. Although benzyl alcohol and acetamide-NADH increase the KI for styrene oxide in a manner consistent with their dissociation constants, substrate also increases the rate of inactivation at high styrene oxide concentrations. The reciprocal of half-times for inactivation, extrapolated to infinite styrene oxide concentration, increases with pH between 7.6 and 9.0, pK congruent to 8.5. The stoichiometry of alkylation by [3H]styrene oxide is 2.2 mol of reagent incorporated/mol of subunit, and is accompanied by the loss of 1.9 mol of sulfhydryl/mol of subunit; prior alkylation with iodoacetamide reduces the stoichiometry to 0.88:1, and increases the rate of labeling. Tryptic digests of enzyme modified with [14C]iodoacetamide or [3H]styrene oxide produce two major peptides which cochromatograph, indicating that styrene oxide and iodoacetamide modify the same cysteine residues. Previous investigators have reported that iodoacetate, iodoacetamide, and butyl isocyanate alkylate either of two reactive cysteines of yeast alcohol dehydrogenase; both cysteines cannot be modified simultaneously [Belke et al. (1974), Biochemistry 13, 3418]. The inactivation of enzyme by p-chloromercuribenzoate (PCMB) is reported here to be accompanied by the incorporation of 2.3 mol of PCMB/mol of enzyme subunits, in analogy with styrene oxide; the planarity of the alkylating agent appears to be an important factor in determining the stoichiometry of labeling.  相似文献   

7.
Incubation of S. typhimurium strain TA 1535 with styrene increased the number of his+ revertants/plate in presence of a fortified S9 rat-liver fraction. Styrene was also highly cytotoxic for Salmonella cells. Styrene oxide, the presumed first metabolite, had a mutagenic effect towards strains TA 1535 and TA 100 both with and without metabolic activation. Styrene is probably mutagenic because it is metabolized to styrene oxide.  相似文献   

8.
Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system.  相似文献   

9.
Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene monooxygenase (StyA2B) of Rhodococcus. Recombinant enzymes were purified from E. coli cells as functional proteins, and their properties were characterized in detail. StyBs (flavin oxidoreductase) of strains ST-5 and ST-10 have similar enzymatic properties to those of Pseudomonas, but StyB of strain ST-10 exhibited higher temperature stability than that of strain ST-5. StyAs of strains ST-5 and ST-10 catalyzed the epoxidation of vinyl side-chain of styrene and its derivatives and produced (S)-epoxides from styrene derivatives and showed high stereoselectivity. Both StyAs showed higher specific activity on halogenated styrene derivatives than on styrene itself. Additionally, the enzymes could catalyze the epoxidation of short-chain 1-alkenes to the corresponding (S)-epoxides. Aromatic compounds including styrene, 3-chlorostyrene, styrene oxide, and benzene exhibited marked inhibition of SMO reaction, although linear 1-alkene showed no inhibition of SMO activity at any concentration.  相似文献   

10.
Enthalpies of phosphorylation of glucose by adenosine 5'-triphosphate have been measured as a function of concentrations of magnesium chloride in TRIS/TRIS-HCl buffer in the pH range 8.64 to 8.98. These measurements are compared with the results of calculations of these enthalpies that use a coupled equilibrium formalism with equilibrium data and enthalpy values selected from the literature. The experimental results span the range of magnesium ion concentrations 1 X 10(-6) to 0.3 mol alpha-1 and show a total variation in the enthalpy of reaction of almost 10 kJ mol-1, with the most exothermic reaction occurring at a magnesium ion concentration of 6.0 X 10(-4) mol alpha-1. The calculated enthalpies of reaction, except for the magnesium ion concentration range 4 X 10(-6) to 5 X 10(-4) mol alpha-1, are, within estimated uncertainty intervals (0.8 to 10.2 kJ mol-1), in agreement with the measured values.  相似文献   

11.
Styrene oxide and 2-phenylethanol metabolism in the styrene-degrading Xanthobacter sp. strain 124X was shown to proceed via phenylacetaldehyde and phenylacetic acid. In cell extracts 2-phenylethanol was oxidized by a phenazine methosulfate-dependent enzyme, probably a pyrroloquinoline quinone enzyme. Xanthobacter sp. strain 124X also contains a novel enzymatic activity designated as styrene oxide isomerase. Styrene oxide isomerase catalyzes the isomerization of styrene oxide to phenylacetaldehyde. The enzyme was partially purified and shown to have a very high substrate specificity. Of the epoxides tested, styrene oxide was the only substrate transformed. The initial step in styrene metabolism in Xanthobacter sp. strain 124X is oxygen dependent and probably involves oxidation of the aromatic nucleus.  相似文献   

12.
The involvement of cyclic adenosine monophosphate (cAMP) in mammalian oocyte maturation was assessed using cultures of rabbit cumulus-oocyte complexes and perfused rabbit ovaries. Rabbit cumulus-oocyte complexes were cultured in Brackett's medium with or without forskolin at 10(-4), 10(-5) or 10(-6) mol l-1 for 3-6 h. At 3 or 4 h spontaneous meiotic maturation was significantly (P < 0.05) inhibited by forskolin at 10(-4) mol l-1. With prolonged incubation, spontaneous maturation progressed despite exposure to forskolin. In the second experiment ovaries were perfused for 12 h with forskolin (10(-4), 10(-5) or 10(-6) mol l-1) or medium alone. Neither ovulation nor degeneration of follicular oocytes occurred in any perfused ovary. The percentage of follicular oocytes achieving germinal vesicle breakdown was significantly (P < 0.001) increased in response to forskolin in a dose-related manner. In an additional experiment, ovaries were perfused with forskolin at 10(-4) mol l-1. A significant increase in the cAMP content in the follicle was observed within 30 min, but the ability to produce cAMP in response to forskolin decreased as the duration of perfusion was increased. Intraoocyte cAMP increased significantly within 30 min and reached its maximum 2 h after exposure to forskolin. Thereafter, cAMP levels in the oocytes decreased abruptly. This drop in intraoocyte cAMP concentration was followed by the resumption of meiosis. The alterations of intraoocyte cAMP contents following exposure to hCG in vivo paralleled those observed in the ovaries perfused with forskolin. These data suggest that a transient, but not continuous, increase in cAMP concentration after the gonadotrophin surge may be required to initiate oocyte maturation.  相似文献   

13.
Chromosome aberrations in cultured human lymphocytes were examined after exposures to various concentrations (from 1 X 10(-6) to 1 X 10(-3) mol X l-1) of cyclophosphamide (CP) in the presence or absence of a metabolic activation system (S9 mix). With metabolic activation, increases in the frequency of aberrant cells (AB. C.) produced by CP were significant and dose-dependent. At a concentration of 5 X 10(-4) mol X l-1, activated CP induced 29% AB. C. versus 6% AB. C. detected after exposures to CP without metabolic activation. The freshly prepared S9 mix did not virtually differ in its activation potency from the S9 mix stored for 3 weeks at -20 degrees C. CP preincubated for 100 min with S9 mix caused little or no increase in AB. C. frequency above the control level.  相似文献   

14.
Ca2+ channel blocker (sensit) and calmodulin antagonists (thioridazine, perphenazine, oxyprothepine) applied to the mucosal side of frog urinary bladder, weakened the response of epithelial cells to vasopressin. Thioridazine (2.7 X 10(-5) mol X l-1) and sensit (1.7 X 10(-4) mol X l-1) applied to the serosal side rapidly increased the permeability of the epithelia for sodium and potassium ions along the concentration gradient (from serosa to mucosa). The same concentrations of these blockers when applied to the mucosal side of frog urinary bladder selectively decreased vasopressin stimulated water permeability and did not influence ionic permeability. Both thioridazine and sensit decreased the short-circuit current across frog skin. The results show that the Ca2+ channel blocker and the calmodulin antagonists tested influenced water and ionic transport across the epithelial cell membranes, and had different effects upon the apical and the basolateral cell membranes.  相似文献   

15.
Styrene is one of the most important industrial intermediates consumed in the world. Human exposure to styrene occurs mainly in the reinforced plastics industry, particularly in developing countries. Styrene has been found to be hepatotoxic and pneumotoxic in humans and animals. The biochemical mechanisms of styrene-induced toxicities remain unknown. Albumin and hemoglobin adduction derived from styrene oxide, a major reactive metabolite of styrene, has been reported in blood samples obtained from styrene-exposed workers. The objectives of the current study focused on cellular protein covalent binding of styrene metabolite and its correlation with cytotoxicity induced by styrene. We found that radioactivity was bound to cellular proteins obtained from mouse airway trees after incubation with 14C-styrene. Microsomal incubation studies showed that the observed protein covalent binding required the metabolic activation of styrene. The observed radioactivity binding in protein samples obtained from the cultured airways and microsomal incubations was significantly suppressed by co-incubation with disulfiram, a CYP2E1 inhibitor, although disulfiram apparently did not show a protective effect against the cytotoxicity of styrene. A 2-fold increase in radioactivity bound to cellular proteins was detected in cells stably transfected with CYP2E1 compared to the wild-type cells after 14C-styrene exposure. With the polyclonal antibody developed in our lab, we detected cellular protein adduction derived from styrene oxide at cysteinyl residues in cells treated with styrene. Competitive immunoblot studies confirmed the modification of cysteine residues by styrene oxide. Cell culture studies showed that the styrene-induced protein modification and cell death increased with the increasing concentration of styrene exposure. In conclusion, we detected cellular protein covalent modification by styrene oxide in microsomal incubations, cultured cells, and mouse airways after exposure to styrene and found a good correlation between styrene-induced cytotoxicity and styrene oxide-derived cellular protein adduction.  相似文献   

16.
K O'Connor  W Duetz  B Wind    A D Dobson 《Applied microbiology》1996,62(10):3594-3599
Styrene degradation in Pseudomonas putida CA-3 has previously been shown to be subject to catabolite repression in batch culture. We report here on the catabolite-repressing effects of succinate and glutamate and the effects of a limiting inorganic-nutrient concentration on the styrene degradation pathway of P. putida CA-3 in a chemostat culture at low growth rates (0.05 h-1). Oxidation of styrene and the presence of styrene oxide isomerase and phenylacetaldehyde dehydrogenase activities were used as a measure of the expression of the styrene degradation pathway. Both glutamate and succinate failed to repress the styrene degradation ability under growth conditions of carbon and energy limitation. Lower levels of enzyme activities of the styrene degradation pathway were seen in cells grown on styrene or phenylacetic acid (PAA) under conditions of both ammonia and sulfate limitation than were seen under carbon and energy limitation. Cells grown on PAA under continuous culture oxidize styrene and styrene oxide and possess styrene oxide isomerase and NAD(+)-dependent phenylacetaldehyde dehydrogenase activities. Catabolite repression of styrene metabolism was observed in cells grown on styrene or PAA in the presence of growth-saturating (nonlimiting) concentrations of succinate or glutamate under sulfate limitation.  相似文献   

17.
Styrene (CAS No. 100-42-5) is an important industrial chemical for which positive results have been reported in in vitro and in vivo genotoxicity assays. Styrene-exposed workers have been studied extensively over two decades for the induction of various types of genotoxic effects. The outcomes of these studies have been conflicting, and where positive responses have been reported, it has proved difficult to demonstrate clear relationships between levels of damage reported and exposure levels. In this review, we have assessed studies addressing mutagenicity (chromosome aberrations, micronuclei and gene mutations) and other endpoints (sister chromatid exchanges, DNA breaks and DNA adducts) using criteria derived from the IPCS guidelines for the conduct of human biomonitoring studies. Based on the re-evaluated outcomes, the data are not convincing that styrene induces gene mutations. The evidence for induction of clastogenicity in occupationally exposed workers is less clear, with a predominant lack of induction of micronuclei in different studies, but conflicting responses in chromosome aberration assays. The results of numerous studies on sister chromatid exchanges do not provide evidence of a clear positive response, despite these being induced in animals exposed to styrene at high concentrations. However, there is evidence that both DNA adducts and DNA single strand breaks are induced in styrene workers. These types of damage are considered indicative of exposure of the target cells and interaction with cellular DNA but do not necessarily result in heritable changes. There is evidence that the metabolism of styrene in humans is affected by genetic polymorphisms of metabolizing genes and that these polymorphisms affect the outcome of in vitro mutagenicity studies on styrene. Therefore, studies that have addressed the potential of this factor to affect in vivo responses were considered. To date, there are no consistent relationships between genetic polymorphisms and induction of genotoxicity by styrene in humans, but further work is warranted on larger samples. The analyses of individual studies, together with a consideration of dose-response relationships and the lack of a common profile of positive responses for the various endpoints in different studies, provide no clear evidence that styrene exposure in workers results in detectable levels of mutagenic damage. However, evidence of exposure to genotoxic metabolites is demonstrated by the formation of DNA adducts and strand breaks.  相似文献   

18.
The action of isoprenaline, a purely beta-agonist, was investigated on frog atrial fibres under voltage clamp conditions; tonic tension was induced by long depolarizing pulses and the outward delayed current simultaneously developed. The cumulative dose-response curves showed that isoprenaline increased the peak of tonic tension in the concentration range 10(-8) to 3. 10(-6) mol.l-1, with a maximum effect for 10(-6) mol.l-1. The positive inotropic action of isoprenaline was associated with an increase in the rates of tension rise and of relaxation. Isoprenaline also increased the amplitude of the outward delayed current in a dose-dependent manner. The effects of isoprenaline (10(-6) mol.l-1) on tonic tension and outward delayed current were not observed in the presence of propranolol (10(-7) mol.l-1). Experiments carried out in low-sodium solution demonstrated that the action of isoprenaline on tonic tension can be explained by activation of Na-Ca exchange; the enhanced relaxation might result from the same process. These results suggested that the positive inotropic action of isoprenaline is mediated not only by the well-known increase in the slow inward current but also by activation of the Na-Ca exchange mechanism.  相似文献   

19.
We performed a macrokinetic and quantitative microbial investigation of a continuously operating bench-scale biofilter treating styrene-polluted gases. The device was filled with a mixture of peat and glass beads as packing medium and inoculated with the styrene-oxidizing strain, Rhodococcus rhodochrous AL NCIMB 13259. The experimental data of styrene and microbial concentrations, obtained at different biofilter heights, were used to evaluate the pollutant concentration profiles as well as the influence of styrene loading on biomass distribution along the packing medium. Styrene and biomass concentration profiles permitted detection of a linear relationship between the amount of biomass grown in a given section of the biofilter and that of pollutant removed, regardless of the operating conditions tested. Biomass development in the bed appeared to: depend linearly on pollutant concentration at an inlet styrene concentration of <0.10 g m(-3) in the gaseous stream; achieve a maximum value (7. 10(7) colony forming units per gram of packing material) within a wide styrene concentration range (0.10 to 1.0 g m(-3)); and fall sharply beyond this inhibition threshold. The process followed zeroth-order macrokinetics with respect to styrene concentration, which is consistent with zeroth-order microkinetics with either fully active or not fully active biofilm. The maximal volumetric styrene removal rate was found to be 63 g m(packing material) (-3) h(-1) for an influent pollutant concentration of 0.80 g m(-3) and a superficial gas velocity of 245 m h(-1).  相似文献   

20.
In the present investigation, interleukin 6 (IL-6) activity in the supernatant of cultured mouse peritoneal macrophages was monitored using a sensitive bioassay involving the IL-6-dependent murine hybridoma B9 cell line. The effects of resveratrol on Il-6 release by mouse peritoneal macrophages stimulated with calcium ionophore A23187 and fMLP were explored. Resveratrol, at a concentration range from 5 x 10(-6) to 4 x 10(-5) mol.l-1, was found to dose-dependently inhibit IL-6 release by cultured macrophages induced by A23187 and fMLP, and showed no direct cytotoxic effect, but induced proliferation of cultured mouse thymus cells. Resveratrol, at a concentration range from 10(-8) to 10(-5) mol.l-1, was shown to dose-dependently inhibit calcium ion influx into the cells with the stimulation of fMLP (10(-6) mol.l-1). These results suggest that the blocking of calcium ion influx into cells by reveratrol is one of the possible mechanisms of the IL-6 biosynthesis inhibitory action of resveratrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号