共查询到20条相似文献,搜索用时 31 毫秒
1.
Steven M. Goodman Helen M. Bradman Claudette P. Maminirina Kate E. Ryan Les L. Christidis Belinda Appleton 《Mammalian Biology》2008,73(3):199-213
Based on morphological, mensural and molecular characters, a new species of bat of the genus Miniopterus is described from Madagascar, M. petersoni. While showing some morphological convergence to the recently named M. sororculus, the species described herein possesses a number of external and cranial characters that separates the two. Further, molecular data indicate that these two taxa are not closely related and are from different portions of the Miniopterus clade. Based on current information, M. petersoni appears to have a distribution in the southeastern portion of Madagascar associated with littoral, lowland and transitional humid-dry forest formations. Populations in the far north of its range, at Montagne d’Ambre in the lower end of montane forest and near Maroantsetra in a lowland zone, are tentatively assigned to M. petersoni. 相似文献
2.
NICOLE WEYENETH STEVEN M. GOODMAN WILLIAM T. STANLEY MANUEL RUEDI 《Molecular ecology》2008,17(24):5205-5219
The endemic fauna of the Comoro Archipelago is composed of a mixture of taxa originating from Africa and Madagascar. Bats are the only native land dwelling mammals on this archipelago, but the biogeographical origins for the vast majority of species within this group are ambiguous. We report here genetic analyses based on two mitochondrial DNA markers to infer the origin of Comorian bats belonging to a reputed species complex of Miniopterus that is further distributed across Africa and Madagascar. Phylogenetic reconstructions show that east African M. minor are not closely related to the insular Miniopterus of Madagascar and the Comoros (Grande Comore and Anjouan). The latter cluster into two distinct, monophyletic clades (Clade 1 and Clade 2). Representatives of these clades occur sympatrically both on the Comoros and on Madagascar, and are distinguished by a large genetic distance (K2P: 9.9% for cytochrome b). No haplotypes are shared between any islands, suggesting the absence of contemporary gene flow. Populations of the widespread Clade 1 are furthermore characterized by a significant inter‐island structure (ΦCT = 0.249), and by high haplotype and nucleotide diversities (h = 0.90–0.98, π = 0.04–0.06). Demographic analyses of Clade 1 suggest secondary contact between two distinct phylogroups (Subclade 1 A and 1B) that reached Grande Comore and Anjouan, and a large, stable population with a long evolutionary history on Madagascar. These results and the current distribution of related lineages suggest that the Comoros were colonized independently at least two or three times by ancestors from Madagascar. 相似文献
3.
S. M. Goodman C. P. Maminirina H. M. Bradman L. Christidis B. R. Appleton 《Journal of Zoological Systematics and Evolutionary Research》2010,48(1):75-86
Over the past decade, major advances have been made concerning the systematics and species diversity of Malagasy bats, largely based on specimens collected during inventories and associated morphological and molecular genetic studies. Herein we describe a new species of endemic bat from southern Madagascar, Miniopterus griffithsi sp. n . , which is the sister taxa to Miniopterus gleni , a taxon described in 1995 (holotype from Sarodrano, just north of the Onilahy River in the southwest). Based on current information, M. griffithsi is found in the sub-arid bioclimatic zone, south of the Onilahy River, and M. gleni occurs in a variety of different bioclimatic zones, north of the Onilahy River to the northern portion of the island and on the near shore island of Ile Sainte Marie. The realization that M. griffithsi was a separate entity was first based on phylogeographic studies of the M. gleni complex. Comparisons using 397 bp of mitochondrial cytochrome b found a divergence of 1.2% within animals occurring across much of Madagascar north of the Onilahy River, 0.07% in those south of the Onilahy River, and 7.4% in populations separated by this river. Subsequently, morphological characters were identified that supported the specific separation of populations occurring south ( M. griffithsi ) and north of the Onilahy River ( M. gleni ), which include tragus shape, pelage coloration, and skull proportions. 相似文献
4.
The large bent-wing bat, Miniopterus schreibersii (Kuhl 1819), has a long history of taxonomic uncertainty and many populations are known to be in a state of decline. Microsatellite loci were developed for the taxonomic and population genetic assessment of the Australian complex of this species. Of the 33 primer sets designed for this research, seven (21%) were deemed suitably polymorphic for population-level analyses of the Australian taxa, with five (71%) of these loci revealing moderate to high levels of polymorphism (PIC = 0.56 to 0.91). The cross-taxa utility of the M. schreibersii microsatellite markers was assessed in the microbat (Chiroptera) family Miniopteridae. Sub-species and species covering the Miniopteridae's global distribution (with the exception of the Middle East) were selected, numbering 25 taxa in total. Amplification was successful for 26 loci, of which 20 (77%) were polymorphic. High cross-taxa utility of markers was observed with amplification achieved for all taxa for between four (20%) and 20 (100%) loci, and polymorphism was considered moderate to high (PIC = 0.47-0.91) for 12 (60%) of these loci. The high cross-taxa utility of the microsatellites reported herein reveal versatile and cost-effective molecular markers, contributing an important genetic resource for the research and conservation of Miniopteridae species worldwide. 相似文献
5.
RACHEL COLLIN 《Zoological Journal of the Linnean Society》2005,144(1):75-101
Calyptraeid gastropods are well know for the taxonomic difficulties caused by their simple, phenotypically variable shells. In this paper I demonstrate that what was previously considered to be a single species, Crepidula aculeata , is an ancient (3–15 Myr) cryptic species complex made up of at least eight species, and that this group should be placed in the genus Bostrycapulus . Despite the difficulty in finding diagnostic adult shell and anatomical features upon which species can be unambiguously identified, DNA sequences, protoconch morphology, embryonic morphology and developmental characters clearly differentiate these eight species. A single species with direct development and nurse eggs is present in the South Atlantic, and a species with planktotrophic development occurs in the equatorial Pacific. The species from Japan, Australia, Florida, the Pacific coasts of Mexico and Central America, and the Cape Verde Islands all have direct development. Most of these species are separated by > 15% divergence in COI sequence data. The fossil record of Bostrycapulus goes back to the Miocene, which agrees with genetic estimates of divergences within the genus ranging from 3 to 15 Mya. Surprisingly, these ancient species differ only slightly in morphology from each other and genetic differentiation does not correlate with geographical distance. I revise the genus Bostrycapulus on the basis of differences in adult morphology, embryonic morphology, mode of development, protoconch morphology, and DNA sequence data. I also describe four new species ( B. pritzkeri sp. nov., B. odites sp. nov., B. latebrus sp. nov. and B. urraca sp. nov. ) and remove three others ( B. gravispinosus , B. calyptraeformis , and B. cf. tegulicius ) from synonymy with B. aculeatus . © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 75−101. 相似文献
6.
This study describes the postnatal development of body mass, forearm length and epiphyseal phalangeal gap in a free ranging population of the Long-fingered Bat, Miniopterus schreibersii pallidus Thomas, 1907, in a maternity roost in the Mahidasht cave in western Iran. The pups at birth had a mean body mass of 3.74?±?0.09 g and forearm length of 24.3?±?0.31mm. The length of forearm and body mass increased linearly during first two weeks, and thereafter maintained an apparent stability. The epiphyseal gap of the fourth metacarpal phalangeal joint increased until the thirteenth day, then decreased linearly until the 70th day and thereafter fused. The rate of body mass gain and forearm growth during the first 13 days was 0.54 g/day and 1.39 mm/day, respectively. Initiation of flight occurred three weeks after birth. A method of estimating age was derived from the values of the forearm length and the total gap of the fourth metacarpal-phalangeal joint during the pre-flight and post-flight periods. 相似文献
7.
普通长翼蝠食性结构及其回声定位与体型特征 总被引:1,自引:0,他引:1
在普通长翼蝠(Miniopterus fuliginosus)的捕食区内用灯诱法和网捕法调查潜在食物(昆虫)种类; 用粪便分析法鉴定普通长翼蝠的食物组成,发现其主要捕食体型较大的鳞翅目和鞘翅目昆虫,体积百分比分别为55%和38%.普通长翼蝠具有相对狭长的翼,翼展比为6.94 ± 0.13;翼载为(9.85 ± 0.83)N/m2,相对较大.飞行状态下普通长翼蝠的回声定位叫声为调频下扫型,声脉冲时程为(1.45 ± 0.06)ms,脉冲间隔为(63.08 ± 21.55)ms,主频较低,为(44.50 ± 2.26)kHz.研究表明,普通长翼蝠的形态特征和回声定位特征与其捕食行为有着密切的联系. 相似文献
8.
Terrence C. Demos Paul W. Webala Julian C. Kerbis Peterhans Steven M. Goodman Michael Bartonjo Bruce D. Patterson 《Journal of Zoological Systematics and Evolutionary Research》2019,57(4):1019-1038
The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South‐East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species‐ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well‐resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male‐biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species‐rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae. 相似文献
9.
Inferring the evolutionary history of a group of species can be challenging given the many factors involved. In recent years, the increased availability of sequences of multiple genes per species has spurred the development of new methodologies to analyse multilocus data sets. Two approaches that analyse such data are concatenated supermatrix and coalescent-based species-tree analyses. In this study, we used both of these methods to infer the phylogenetic relationships of Iberian species of the genus Squalius from one mitochondrial and six nuclear genes. We found mitonuclear discordance in the phylogenetic relationships of the group. According to the mitochondrial gene analysis, all species were recovered as monophyletic except S. pyrenaicus; besides, in the concatenated supermatrix analysis of the nuclear markers, this species resolved as polyphyletic with three divergent evolutionary lineages. The coalescent-based nuclear species-tree analysis rendered a well-resolved phylogeny compared with the supermatrix analysis, which was unable to discern between S. carolitertii, S. castellanus and one of the evolutionary lineages of S. pyrenaicus. This result is likely due to the better integration of population uncertainty in the coalescent approach. Furthermore, Bayesian multilocus species delimitation analyses based on a BPP approach strongly supported the distinct nuclear lineages as different species. Nevertheless, the supermatrix analysis was able to obtain well-supported relationships in the divergent lineages with low numbers of individuals. Our study highlights the usefulness of different analytical methodologies to obtain a more complete picture of the evolutionary history of taxa, especially when discordant patterns among genes are found. 相似文献
10.
11.
Only three saproxylic species of Pyrochroinae (Coleoptera: Pyrochroidae) are distributed in Europe, two of which belonging to Pyrochroa: P. coccinea and P. serraticornis. However, P. serraticornis is polytypic, for the presence of the endemic subspecies P. s. kiesenwetteri in southern Italy. Using both molecular and morphological data, we explored the phylogeny of the European Pyrochroa species. A multilocus (COI, CAD, 28S) phylogenetic analysis helped highlight different evolutionary histories for the two examined species. First, P. coccinea, distributed throughout Europe, showed a high differentiation among Italian and European populations. Furthermore, three different taxonomic entities were identified within P. serraticornis, among which the cryptic species Pyrochroa bifoveata sp. n. from central Europe is described and illustrated. A comprehensive identification key to the European Pyrochroinae is also provided. Our results also suggested an historical survival of P. coccinea and P. s. kiesenwetteri in glacial refugia in Italy, and a subsequent post-glacial spread of the former species throughout the Peninsula. In contrast, the current distribution of P. s. serraticornis likely originated from a post-glacial colonization of western European relict populations, while the survival of P. bifoveata plausibly occurred in more eastern glacial refugia (e.g. Carpathian or Balkan regions). Similarly, the European populations of P. coccinea could have originated from relict populations in glacial refugia out from the Italian Peninsula. More comprehensive data on the taxonomy, ecology and biogeography of Pyrochroa are needed to learn more about these species and to help preserve the European saproxylic fauna. 相似文献
12.
Pontomyia Edwards, 1926 (Diptera: Chironomidae) is a genus of exclusively marine flightless midges. There are four described species from the Indo‐Pacific, and one undescribed species known only from females, pupal skins, and larvae from the Atlantic/Caribbean. They are poorly known owing to their small size (~1.0 mm), extremely short adult life (< 3 h), and unusual habitat for an insect (coastal lagoons, bays, or rock pools). We reviewed scattered literature on their biology and systematics, presented photomicrographs of the male hypogium, and updated the geographic distribution of each species. We carried out the first molecular study to elucidate relationships among and within three of the species. Results from our four‐gene phylogenetic reconstruction using combined gene tree and species tree approaches showed that Pontomyia natans, Pontomyia oceana, and Pontomyia pacifica are each well‐supported clades, with P. natans as sister to P. oceana + P. pacifica. Genetic distances based on mitochondrial cytochrome oxidase I are extraordinarily large within P. natans and P. pacifica, which suggests that they may be cryptic species complexes. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 443–456. 相似文献
13.
Hidden in the Arabian Mountains: Multilocus phylogeny reveals cryptic diversity in the endemic Omanosaura lizards 下载免费PDF全文
Joana Mendes Daniele Salvi David James Harris Johannes Els Salvador Carranza 《Journal of Zoological Systematics and Evolutionary Research》2018,56(3):395-407
An increase in studies in the Hajar Mountains from the southeastern Arabian Peninsula has revealed a high richness of endemic evolutionary lineages with many cryptic taxa. Omanosaura is the only lacertid lizard genus endemic to the Hajar Mountains, with two species O. cyanura and O. jayakari distributed throughout this mountain range. The phylogenetic relationships and genetic diversity between and within these species have been poorly studied. In this study, we collected mitochondrial (12S, cytb, and nd4) and nuclear (cmos and mc1r) sequences for 25 specimens of Omanosaura, including 15 individuals of O. jayakari and 10 of O. cyanura. We performed phylogenetic analyses based on network reconstruction, maximum likelihood and Bayesian inference to estimate the relationships and intraspecific genetic diversity of these species. We estimated the time of divergence between the two species in the Miocene, around 8.5 million years ago. Omanosaura jayakari shows little genetic diversity, while O. cyanura presents two differentiated lineages. These are reciprocally monophyletic at mitochondrial and nuclear genes and present a high genetic distance between them. These two lineages are associated with the geographic features of the Hajar Mountains, with one lineage distributed in the northernmost part of the Hajar Mountains and the other in the rest of the western Hajars, the Jebel Akhdar, and the eastern Hajars. This geographic relationship has been recovered previously in other reptile taxa and is generally associated with high levels of local genetic diversity. Our results suggest the existence of cryptic diversity within O. cyanura and support a general biogeographic pattern of high diversity and endemism in the northern Hajar Mountains that certainly deserves additional research in the future. 相似文献
14.
The ant genus Paratrechina is reexamined based on the discovery of two new species from Madagascar (P. ankaranasp. n. and P. antsingysp. n.). Paratrechina kohli, a species known from central Africa, is transferred to Paratrechina from Prenolepis based on a new morphological interpretation of the genus and an updated morphological diagnosis of the genus is provided. This means that other than the widespread P. longicornis, whose origins remain uncertain, all Paratrechina are restricted either to the Afrotropical or Malagasy regions. It would also appear that of the five Paratrechina species now known, three are from dry forest habitats. With this reexamination of the genus, the possible origins of P. longicornis are discussed. A key to the genera of the Prenolepis genus-group is provided, as is a key to the workers of Paratrechina. In addition, we also designate a lectotype for Paratrechina kohli. 相似文献
15.
Multilocus phylogeny and species delimitation within the genus Glauconycteris (Chiroptera,Vespertilionidae), with the description of a new bat species from the Tshopo Province of the Democratic Republic of the Congo 下载免费PDF全文
Alexandre Hassanin Raphaël Colombo Guy‐Crispin Gembu Marie Merle Vuong Tan Tu Tamás Görföl Prescott Musaba Akawa Gábor Csorba Teresa Kearney Ara Monadjem Ros Kiri Ing 《Journal of Zoological Systematics and Evolutionary Research》2018,56(1):1-22
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed. 相似文献
16.
BEZA RAMASINDRAZANA STEVEN M. GOODMAN M. CORRIE SCHOEMAN BELINDA APPLETON 《Biological journal of the Linnean Society. Linnean Society of London》2011,104(2):284-302
The number of Miniopterus bat species on Madagascar and the nearby Comoros islands (Malagasy region) has risen from four to 11. These recently described cryptic taxa have been differentiated primarily based on molecular markers and associated a posteriori morphological characters that corroborate the different clades. Members of this Old World genus are notably conservative in morphology across their range. Several sites on Madagascar hold up to four small‐bodied taxa of this genus that are morphologically similar to one another, although they can be distinguished based on the tragus, an ear structure associated with echolocation. Miniopterus often emit species‐specific calls. In the present study, we analyze the bioacoustics of the 11 species of Miniopterus currently recognized from the Malagasy region, with an initial identification of the 87 recorded and collected individuals based on molecular markers and certain morphological characters. In most cases, bioacoustic parameters differentiate species and have taxonomic utility. Miniopterus griveaudi populations, which occur on three islands (Madagascar, Anjouan, and Grande Comore), showed no significant differences in peak echolocation frequencies. After running a discriminant function analysis based on five bioacoustic parameters, some mismatched assignments of Malagasy species were found, which include allopatric sister‐taxa and sympatric, phylogenetically not closely‐related species of similar body size. Because the peak echolocation frequencies of two species (Miniopterus sororculus and Miniopterus aelleni) were independent of body size, they were acoustically distinguishable from cryptic sympatric congeners. The small variation around the allometric relationship between body size and peak echolocation frequency of Malagasy Miniopterus species suggests that intraspecific communication rather than competition or prey detection may be the driver for the acoustic divergence of these two species. Our well‐defined echolocation data allow detailed ecological work to commence aiming to test predictions about the relative roles of competition, prey availability, and social communication on the evolution of echolocation in Malagasy Miniopterus species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 284–302. 相似文献
17.
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data. 相似文献
18.
Niemiller ML Near TJ Fitzpatrick BM 《Evolution; international journal of organic evolution》2012,66(3):846-866
A major challenge facing biodiversity conservation and management is that a significant portion of species diversity remains undiscovered or undescribed. This is particularly evident in subterranean animals in which species delimitation based on morphology is difficult because differentiation is often obscured by phenotypic convergence. Multilocus genetic data constitute a valuable source of information for species delimitation in such organisms, but until recently, few methods were available to objectively test species delimitation hypotheses using genetic data. Here, we use recently developed methods for discovering and testing species boundaries and relationships using a multilocus dataset in a widely distributed subterranean teleost fish, Typhlichthys subterraneus, endemic to Eastern North America. We provide evidence that species diversity in T. subterraneus is currently underestimated and that the picture of a single, widely distributed species is not supported. Rather, several morphologically cryptic lineages comprise the diversity in this clade, including support for the recognition of T. eigenmanni. The high number of cryptic species in Typhlichthys highlights the utility of multilocus genetic data in delimiting species, particularly in lineages that exhibit slight morphological disparity, such as subterranean organisms. However, results depend on sampling of individuals and loci; this issue needs further study. 相似文献
19.
New insights into the systematics of Malagasy mongoose‐like carnivorans (Carnivora,Eupleridae, Galidiinae) based on mitochondrial and nuclear DNA sequences 下载免费PDF全文
Géraldine Veron Délia Dupré Andrew P. Jennings Charlie J. Gardner Alexandre Hassanin Steven M. Goodman 《Journal of Zoological Systematics and Evolutionary Research》2017,55(3):250-264
The Malagasy carnivorans (Eupleridae) comprise seven genera and up to ten species, depending on the authority, and, within the past decades, two new taxa have been described. The family is divided into two subfamilies, the Galidiinae, mongoose‐like animals, and the Euplerinae, with diverse body forms. To verify the taxonomic status of Galidiinae species, including recently described taxa, as well as some recognized subspecies, we studied intrageneric genetic variation and structure, using both mitochondrial and nuclear markers. Our results suggest the recognition of four species in the Galidiinae, rendering each genus monospecific. We propose to recognize three subspecies in Galidia elegans (G. e. dambrensis, G. e. elegans, and G. e. occidentalis), two subspecies in Mungotictis decemlineata (M. d. decemlineata and M. d. lineata), and two subspecies in Galidictis fasciata (G. f. fasciata and G. f. grandidieri, the latter was recently described as a distinct species). Our results indicate also that Salanoia durrelli should be treated as a junior synonym of Salanoia concolor. Low levels of intraspecific divergence revealed some geographical structure for the Galidiinae taxa, suggesting that environmental barriers have isolated certain populations in recent geological time. All taxa, whether at the species or subspecies level, need urgent conservation attention, particularly those with limited geographical distributions, as all are threatened by forest habitat degradation. 相似文献
20.
The taxonomic status of bent‐winged bats (Miniopterus) in the Western Palaearctic and adjacent regions is unclear, particularly in some areas of the eastern Mediterranean, Middle East and Arabia. To address this, we analysed an extensive collection of museum materials from all principal parts of this distribution range, i.e. North Africa, Europe and southwest Asia, using morphological (skull) and genetic approaches (mitochondrial DNA). Linear and geometric morphometric analysis of cranial and dental characteristics, together with molecular phylogeny, suggested that Miniopterus populations comprise four separate species: (1) M. schreibersii sensu strictissimo (s.str.) – occurring in Europe, coastal Anatolia, Levant, Cyprus, western Transcaucasia, and North Africa; (2) M. pallidus – occurring in inland Anatolia, Jordan, eastern Transcaucasia, Turkmenistan, Iran and southern Afghanistan (Kandahar); (3) a Miniopterus sp. – recorded from Nangarhar province in eastern Afghanistan, which we tentatively assign to M. cf. fuliginosus; and (4) a Miniopterus sp. with Afro‐tropic affinities confirmed from south‐western Arabia and Ethiopia, which we tentatively name M. cf. arenarius. The latter two species are well differentiated by skull morphology, while M. pallidus possesses very similar skull morphology to M. schreibersii. The results also suggest the existence of a possible new taxon (subspecies) within M. schreibersii s.str. inhabiting the Atlas Mountains of Morocco. © 2012 The Linnean Society of London 相似文献