首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

2.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

3.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

4.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

5.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1‐α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1‐α, and analysis of COI and EF1‐α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929 ), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009 ), comb. nov., and P. middletonii (Thomas, 1879 ). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

6.
7.
The tribe Acanthoplectrini (Myrmeleontidae: Dendroleontinae) includes a group of antlion genera widely distributed across the Australasian and Oriental regions. The intergeneric and interspecific relationships between or within the Australian and Oriental lineages of this tribe as well as their historical biogeography remain largely unexplored. Here, we present a molecular phylogenetic and biogeographic analyses of Acanthoplectrini to infer the diversification history of this tribe, with emphasis on the Oriental lineage. Both the Oriental and Australian lineages are monophyletic and recovered as sister groups. Ancestral area reconstruction suggests that the ancestor of Acanthoplectrini might have been once widely distributed from Indochina to Australia and then split into the Oriental and Australian lineages during the early-Miocene. Our analyses recovered northeastern Indochina and south China as the ancestral range of the Oriental Acanthoplectrini. During the mid-Miocene to the mid-Pliocene, orographic events such as the rising of mountain ranges (including the Himalayas) and the formation of major islands in southeastern Asia triggered several dispersal and vicariance events in the Oriental Acanthoplectrini, driving their speciation. We revise the classification of the Oriental Acanthoplectrini, establishing the new genus Paralayahima gen. n. , which is recovered sister to Layahima Navás. Moreover, we describe four new species of Layahima, Layahima aspoeckorum sp. n. , Layahima monba sp. n. , Layahima lhoba sp. n. and Layahima xinliae sp. n. , and we reinstate two previously synonymized species, Layahima melanocoris (Yang) stat. rev. and comb. n. and Layahima nebulosa Navás stat. rev.  相似文献   

8.
A new combined molecular and morphological phylogeny of the Eulophidae is presented with special reference to the subfamily Entedoninae. We examined 28S D2–D5 and CO1 gene regions with parsimony and partitioned Bayesian analyses, and examined the impact of a small set of historically recognized morphological characters on combined analyses. Eulophidae was strongly supported as monophyletic only after exclusion of the enigmatic genus Trisecodes. The subfamilies Eulophinae, Entiinae (=Euderinae) and Tetrastichinae were consistently supported as monophyletic, but Entedoninae was monophyletic only in combined analyses. Six contiguous bases in the 3e′ subregion of the 28S D2 rDNA contributed to placement of nominal subgenus of Closterocerus outside Entedoninae. In all cases, Euderomphalini was excluded from Entiinae, and we suggest that it be retained in Entedoninae. Opheliminae n. stat. is raised from tribe to subfamily status. Trisecodes is removed from Entedoninae but retained as incertae sedis in Eulophidae until its family placement can be determined new placement . The genera Neochrysocharis stat. rev. and Asecodes stat. rev. are removed from synonymy with Closterocerus because strong molecular differences corroborate their morphological differences. Closterocerus (Achrysocharis) germanicus is transferred to the genus Chrysonotomyia n. comb. based on molecular and morphological characters.  相似文献   

9.
The phylogeny and classification of tribe Aedini are delineated based on a cladistic analysis of 336 characters from eggs, fourth‐instar larvae, pupae, adult females and males, and immature stage habitat coded for 270 exemplar species, including an outgroup of four species from different non‐aedine genera. Analyses of the data set with all multistate characters treated as unordered under implied weights, implemented by TNT version 1.1, with values of the concavity constant K ranging from 7 to 12 each produced a single most parsimonious cladogram (MPC). The MPCs obtained with K values of 7–9 were identical, and that for K = 10 differed only in small changes in the relationships within one subclade. Because values of K < 7 and > 10 produced large changes in the relationships among the taxa, the stability of relationships exemplified by the MPC obtained from the K = 9 analysis is used to interpret the phylogeny and classification of Aedini. Clade support was assessed using parsimony jackknife and symmetric resampling. Overall, the results reinforce the patterns of relationships obtained previously despite differences in the taxa and characters included in the analyses. With two exceptions, all of the groups represented by two or more species were once again recovered as monophyletic taxa. Thus, the monophyly of the following genera and subgenera is corroborated: Aedes, Albuginosus, Armigeres (and its two subgenera), Ayurakitia, Bothaella, Bruceharrisonius, Christophersiomyia, Collessius (and its two subgenera), Dahliana, Danielsia, Dobrotworskyius, Downsiomyia, Edwardsaedes, Finlaya, Georgecraigius (and its two subgenera), Eretmapodites, Geoskusea, Gilesius, Haemagogus (and its two subgenera), Heizmannia (and subgenus Heizmannia), Hopkinsius (and its two subgenera), Howardina, Hulecoeteomyia, Jarnellius, Kenknightia, Lorrainea, Macleaya, Mucidus (and its two subgenera), Neomelaniconion, Ochlerotatus (subgenera Chrysoconops, Culicelsa, Gilesia, Pholeomyia, Protoculex, Rusticoidus and Pseudoskusea), Opifex, Paraedes, Patmarksia, Phagomyia, Pseudarmigeres, Rhinoskusea, Psorophora (and its three subgenera), Rampamyia, Scutomyia, Stegomyia, Tanakaius, Udaya, Vansomerenis, Verrallina (and subgenera Harbachius and Neomacleaya), Zavortinkius and Zeugnomyia. In addition, the monophyly of Tewarius, newly added to the data set, is confirmed. Heizmannia (Mattinglyia) and Verrallina (Verrallina) were found to be paraphyletic with respect to Heizmannia (Heizmannia) and Verrallina (Neomacleaya), respectively. The analyses were repeated with the 14 characters derived from length measurements treated as ordered. Although somewhat different patterns of relationships among the genera and subgenera were found, all were recovered as monophyletic taxa with the sole exception of Dendroskusea stat. nov. Fifteen additional genera, three of which are new, and 12 additional subgenera, 11 of which are new, are proposed for monophyletic clades, and a few lineages represented by a single species, based on tree topology, the principle of equivalent rank, branch support and the number and nature of the characters that support the branches. Acartomyia stat. nov. , Aedimorphus stat. nov. , Cancraedes stat. nov. , Cornetius stat. nov. , Geoskusea stat. nov. , Levua stat. nov. , Lewnielsenius stat. nov. , Rhinoskusea stat. nov. and Sallumia stat. nov., which were previously recognized as subgenera of various genera, are elevated to generic status. Catageiomyia stat. nov. and Polyleptiomyia stat. nov. are resurrected from synonymy with Aedimorphus, and Catatassomyia stat. nov. and Dendroskusea stat. nov. are resurrected from synonymy with Diceromyia. Bifidistylus gen. nov. (type species: Aedes lamborni Edwards) and Elpeytonius gen. nov. (type species: Ochlerotatus apicoannulatus Edwards) are described as new for species previously included in Aedes (Aedimorphus), and Petermattinglyius gen. nov. (type species: Aedes iyengari Edwards) and Pe. (Aglaonotus) subgen. nov. (type species: Aedes whartoni Mattingly) are described as new for species previously included in Aedes (Diceromyia). Four additional subgenera are recognized for species of Ochlerotatus, including Oc. (Culicada) stat. nov. (type species: Culex canadensis Theobald), Oc. (Juppius) subgen. nov. (type species: Grabhamia caballa Theobald), Oc. (Lepidokeneon) subgen. nov. (type species: Aedes spilotus Marks) and Oc. (Woodius) subgen. nov. (type species: Aedes intrudens Dyar), and seven are proposed for species of Stegomyia: St. (Actinothrix) subgen. nov. (type species: Stegomyia edwardsi Barraud), St. (Bohartius) subgen. nov. (type species: Aedes pandani Stone), St. (Heteraspidion) subgen. nov. (type species: Stegomyia annandalei Theobald), St. (Huangmyia) subgen. nov. (type species: Stegomyia mediopunctata Theobald), St. (Mukwaya) subgen. nov. (type species: Stegomyia simpsoni Theobald), St. (Xyele) subgen. nov. (type species: Stegomyia desmotes Giles) and St. (Zoromorphus) subgen. nov. (type species: Aedes futunae Belkin). Due to the unavailability of specimens for study, many species of Stegomyia are without subgeneric placement. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species.  相似文献   

10.
Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.  相似文献   

11.
Naupactini (Curculionidae: Entiminae) is a primarily Neotropical tribe of broad‐nosed weevils with its highest genus and species diversity in South America. Despite several taxonomic contributions published during the last decades, the evolutionary history of Naupactini remains poorly understood. We present the first comprehensive phylogenetic analysis for this tribe based on a data matrix of 100 adult morphological characters scored for 70 species, representing 55 genera of Naupactini (ingroup) and four outgroups belonging to the entimine tribes Otiorhynchini, Entimini, Eustylini and Tanymecini. According to the most parsimonious tree Artipus does not belong to Naupactini; the genera with flat and broad antennae, formerly assigned to other entimine tribes, form a monophyletic group (Saurops (Curiades (Aptolemus (Platyomus)))) related to the clade (Megalostylus (Megalostylodes (Chamaelops Wagneriella))); and the genera distributed along the high Andes, Paramos and Puna form a natural group (Asymmathetes (Amphideritus (Leschenius (Amitrus (Obrieniolus (Melanocyphus Trichocyphus)))))), nested within a larger clade that includes Pantomorus, Naupactus and allied genera. Atrichonotus, Hoplopactus, Mimographus and Naupactus are not recovered as monophyletic. In order to address the taxonomic implications of our phylogenetic analysis, we propose the following nomenclatural changes: to transfer Artipus from Naupactini to Geonemini, to revalidate the genera Mimographopsis (type species M. viridicans), and to revalidate the genus Floresianus (type species F. sordidus). The evolution of selected characters is discussed. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:C8AA4388‐A2F0‐4E2D‐889A‐500BEA5A9DE1 .  相似文献   

12.
13.
The Old World tribe Syntomini is the most neglected of the three major groups of the subfamily Arctiinae – the most megadiverse lineage (c. 11 000 species) of the superfamily Noctuoidea, comprising about a quarter of its entire species diversity. In none of the previous morphogenetic studies was Syntomini (which are often conspicuously spotted, aposematic moths) sampled adequately enough to provide information about the tribe's systematic diversity and relationships above species level. As such data are of crucial importance for a comprehensive understanding of arctiine diversity and evolution, we have investigated the relationships of the major lineages of Syntomini based on up to eight mitochondrial and nuclear genes and 91 species, representing 39 genera. We cover most of the known genera and major geographic regions, including, for the first time, Madagascar, where there is a significant syntomine radiation. We find that the thyretines, in particular, which are restricted to the Afrotropical region, are paraphyletic. As a result we propose to treat Thyretina syn.n. (Thyretini sensu Przyby?owicz, 2009) as an artificial assemblage and synonymize it under Syntomini. Thyretes Boisduval and Pseudothyretes Dufrane stand on their own close to the Madagascan radiation, whereas all but one of the Madagascan syntomines comprise a monophylum, with the genus Fletcherinia Griveaud instead being related to at least one species of Ceryx Wallengren in Africa. Also surprising from a biogeographical point of view is that the genus Dysauxes Hübner, which includes the European Handmaiden moth, is nested within the Madagascan radiation. Our study also makes it clear that much more detailed studies are needed to revise not only Ceryx from Asia and Africa but the Afrotropical syntomine genera, many of which do not form clades in our phylogenetic reconstruction, and to further inventory the diversity that is present in the Afrotropics. Based on our results, we consider Thyretarctia Strand stat. rev., Daphaenisca Kiriakoff stat.n. and Callobalacra Kiriakoff stat.n. as valid genera. We also move Anapisa Kiriakoff and return Meganaclia Aurivillius and Nacliodes Strand to Syntomini.  相似文献   

14.
Phylogenetic relationships among forty‐nine taxa representing twenty‐four genera of Aphidiinae (Hymenoptera: Braconidae) were investigated using DNA sequence of a portion of the mitochondrial 16S rRNA gene and parsimony analysis. Seven species in six other subfamilies of Braconidae were used as outgroup. The results suggested that members of Aphidiinae are monophyletic. The basal lineage of Aphidiinae was Aclitus in weighted and unweighted parsimony analyses and Praini was basal relative to Ephedrini. With the exception of Pauesia and Aphidius, all genera were monophyletic. The results support generic status for Euaphidius, but not for Lysaphidus. Diaeretus leucopterus was internal to a clade composed of three Pauesia species, suggesting that the latter genus may be paraphyletic. A combined analysis that included DNA sequence of 16S rRNA, NADH1 dehydrogenase and 28S rRNA resulted in more robust cladograms with topologies similar to those inferred from the 16S rRNA gene sequence alone. The results are compared to previously proposed phylogenies of Aphidiinae based on morphological and molecular characters.  相似文献   

15.
We describe morphological characters of the genera Nigrobaetis, Alainites, Labiobaetis, and Tenuibaetis n. stat. and provide generic situations of six Japanese species: Nigrobaetis chocoratus n. comb., N. sacishimensis n. comb., Alainites atagonis, A. florens, A. yoshinensis, and Tenuibaetis pseudofrequentus. To evaluate the polarities of the morphological characters and the monophyly of Nigrobaetis, Alainites, Labiobaetis, and Tenuibaetis, character states of these four genera were compared with the genus Cloeon as an outgroup. Labiobaetis is considered to be a monophyletic group supported by a wide paraglossa. Tenuibaetis is a monophyletic group that is distinguishable from the related genera by robust setae with a medial ridge on the dorsomedian surface of the nymphal femur. We did not find any synapomorphic characters of Nigrobaetis or Alainites. Although we tentatively treat Nigrobaetis and Alainites as distinct genera, they are considered to be paraphyletic taxa.  相似文献   

16.
Crambinae (2047 spp.) and Scopariinae (577 spp.) are two major groups of pyraloid moths with a worldwide distribution. Their larvae feed predominantly on Poales and Bryophyta, with many cereal crop pests. We present the first molecular phylogeny of the two groups based on five nuclear genes and one mitochondrial gene (total = 4713 bp) sampled for 58 crambine species representing 56 genera and all tribes, 33 scopariine species representing 12 genera, and species in several other crambid lineages. Maximum likelihood and Bayesian analyses of the molecular data resolve suprageneric relationships in Crambinae and Scopariinae, whereas relationships between these and other subfamilies remain ambiguous. Crambinae and Scopariinae are each recovered as monophyletic groups, and Erupini, formerly regarded as an ingroup of Midilinae, is recovered as a possible sister group of Crambinae. The tree topology suggests the following two major changes within Crambinae: Prionapterygini Landry syn.n. of Ancylolomiini Ragonot stat. rev. and Myelobiini Minet syn.n. of Chiloini Heinemann. Argyriini Munroe is monophyletic after the transfer of Pseudocatharylla Bleszynski and Vaxi Bleszynski to Calamotrophini. Crambini, Diptychophorini and Haimbachiini are monophyletic after the exclusion of Ancylolomia Hübner, Euchromius Guenée, Micrelephas Dognin and Miyakea Marumo from Crambini, as well as Microchilo Okano from Diptychophorini. Euchromiini tribe n. is described for Euchromius. Microcramboides Bleszynski syn.n. and Tortriculladia Bleszynski syn.n. are synonymized with Microcrambus Bleszynski. In Scopariinae, Caradjaina Leraut syn.n. and Cholius Guenée syn.n. are synonymized with Scoparia Haworth, and, in addition, Dasyscopa Meyrick syn.n. , Dipleurinodes Leraut syn.n. and Eudipleurina Leraut syn.n. are synonymized with Eudonia Billberg. Micraglossa melanoxantha (Turner) (Scoparia) comb.n. is proposed as a new combination. We analysed 27 morphological characters of wing venation, tympanal organs, male and female genitalia, as well as host plant data and egg‐laying behaviour. The ancestral character‐state reconstructions confirmed previous apomorphies and highlighted new apomorphies for some of the newly recovered clades. The derived, nonadhesive egg‐dropping behaviour is found to have evolved at least twice in Crambinae and is associated with the use of Pooideae as host plants. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:1A84282D‐930A‐4C32‐8340‐D681BFF27A12 .  相似文献   

17.
The phylogeny of the subfamily Ophioninae (Hymenoptera: Ichneumonidae) is investigated using molecular markers and morphological characters. We analysed the mitochondrial DNA CO1 and the nuclear 28S D2–D3 gene fragments for 74 species of Ophioninae from 25 out of the 32 recognized genera, which collectively represent 98% of described species diversity of the subfamily. Molecular markers were analysed separately and combined, with or without the adjunction of a matrix of 62 morphological characters using Bayesian inference. Our results reveal three distinct lineages, each including one of most speciose genera: Ophion, Enicospilus and Thyreodon. The comparison of the molecular data, and combined molecular plus morphological data led to the definition of the three tribes: Ophionini stat. rev. (Ophion Alophophion Rhopalophion Xylophion Afrophion); Enicospilini stat. rev. (Enicospilus Laticoleus Dicamptus Hellwigiella); and Thyreodonini tribe nov. (Thyreodon Dictyonotus Rhynchophion). The possible association of other genera to one or another of these lineages is discussed. Ophion is a polyphyletic assemblage and requires a further revision to define the delimitation with close genera. The enigmatic Old World genus Skiapus is strongly supported as belonging to the Ophioninae, although its placement within the subfamily is ambiguous as a result of its derived genotype and phenotype. Finally, we propose a biogeographical scenario supported by this phylogeny and based on the limited available fossil data.  相似文献   

18.
We present a molecular phylogeny of Nitidulidae based on thirty ingroup taxa representing eight of the ten currently recognized subfamilies. Approximately 10 K base pairs from seven loci (12S, 16S, 18S, 28S, COI, COII and H3) were used for the phylogenetic reconstruction. The phylogeny supports the following main conclusions: (i) Cybocephalidae are formally recognized as a distinct family not closely related to Nitidulidae and its constituent taxa are defined; (ii) Kateretidae are sister to Nitidulidae; (iii) Cryptarchinae are monophyletic and sister to the remaining nitidulid subfamilies; (iv) subfamily Prometopinae stat. res. is reinstated and defined, to accommodate taxa allied to Axyra Erichson, Prometopia Erichson and Megauchenia MacLeay; (v) Amphicrossinae, Carpophilinae and Epuraeinae are shown to be closely related taxa within a well‐supported monophyletic clade; (vi) tribal affinities and respective monophyly within Nitidulinae are poorly resolved by our data and must be more rigorously tested as there was little or no support for prior morphologically based tribes or genus‐level complexes; (vii) Nitidulinae are found to be paraphyletic with respect to Cillaeinae and Meligethinae, suggesting that they should either be subsumed as tribes, or Nitidulinae should be divided into several subfamilies to preserve the status of Cillaeinae and Meligethinae; (viii) Teichostethus Sharp stat. res. is not a synonym of Hebascus Erichson and the former is reinstated as a valid genus. These conclusions and emendations are discussed in detail and presented within a morphological framework.  相似文献   

19.
We present the most inclusive study on the higher-level phylogeny of erigonine spiders, including about 30% of all erigonine genera. By expanding the previously most comprehensive analysis (Miller and Hormiga Cladistics 20:385–442, 2004) we tested the robustness of its results to the addition of closely related taxa, and also the monophyly of the Savignia-group defined by Millidge (Bulletin of the British Arachnological Society 4:1–60, 1977). The character matrix was expanded by adding 18 newly scored species in 15 genera, and also includes all species scored by other authors. This adds up to 98 species in 91 erigonine genera plus 13 outgroup taxa. The parsimony analysis led to eight fully resolved most parsimonious trees (L=1084). The topology concerning the taxa basal to the ‘distal erigonines’ remained unchanged, and the latter clade still shares 67% of all nodes with the original analysis. The Savignia-group is not monophyletic at genus level with respect to Saloca diceros and Alioranus pastoralis, and the same applies at species level in Diplocephalus and Erigonella. From the Savignia-group, Glyphesis servulus, Diplocephalus cristatus, Savignia frontata, and two representatives each of Erigonella, Dicymbium and Araeoncus combine to form a monophyletic clade.  相似文献   

20.
We investigated higher-level phylogenetic relationships within the genus Halictus based on parsimony and maximum likelihood (ML) analysis of elongation factor-1α DNA sequence data. Our data set includes 41 OTUs representing 35 species of halictine bees from a diverse sample of outgroup genera and from the three widely recognized subgenera of Halictus (Halictus s.s., Seladonia, and Vestitohalictus). We analyzed 1513 total aligned nucleotide sites spanning three exons and two introns. Equal-weights parsimony analysis of the overall data set yielded 144 equally parsimonious trees. Major conclusions supported in this analysis (and in all subsequent analyses) included the following: (1) Thrincohalictus is the sister group to Halictus s.l., (2) Halictus s.l. is monophyletic, (3) Vestitohalictus renders Seladonia paraphyletic but together Seladonia + Vestitohalictus is monophyletic, (4) Michener's Groups 1 and 3 are monophyletic, and (5) Michener's Group 1 renders Group 2 paraphyletic. In order to resolve basal relationships within Halictus we applied various weighting schemes under parsimony (successive approximations character weighting and implied weights) and employed ML under 17 models of sequence evolution. Weighted parsimony yielded conflicting results but, in general, supported the hypothesis that Seladonia + Vestitohalictus is sister to Michener's Group 3 and renders Halictus s.s. paraphyletic. ML analyses using the GTR model with site-specific rates supported an alternative hypothesis: Seladonia + Vestitohalictus is sister to Halictus s.s. We mapped social behavior onto trees obtained under ML and parsimony in order to reconstruct the likely historical pattern of social evolution. Our results are unambiguous: the ancestral state for the genus Halictus is eusociality. Reversal to solitary behavior has occurred at least four times among the species included in our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号