首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four major biological strategies of ichneumonoid parasitoids, koinobiont and idiobiont, ecto-and endoparasitism, are discussed and the evolutionary radiations of the two families Ichneumonidae and Braconidae compared in an attempt to relate differences in patterns of host utilization to differences in evolutionary history. The most primitive members of both families are idiobiont ectoparasitoids of hosts concealed in plant tissue. Idiobiont ectoparasitic braconids are all still primarily associated with such hosts, but idiobiont ectoparasitic ichneumonids have radiated to attack hosts in other situations, such as in aculeate nests or in cocoons. A shift in emphasis between the behavioural steps, host habitat location and host location, is envisaged as being important in such evolutionary change. Idiobiont endoparasitism is postulated as having arisen amongst ectoparasitoids attacking cocooned hosts, as an adaptation that allows them to exploit pupae and puparia in relatively exposed positions; it is a fairly common strategy in the Ichneumonidae, but virtually unknown in the Braconidae. Koinobiosis is perceived as having evolved in association with hosts which feed in a relatively weakly concealed position, but pupate in a more secluded and safe location. The strategy is advantageous as it allows a parasitoid to oviposit on an easily discoverable host, but to use the host's pupation concealment to complete its own development. The evolution of koinobiosis has allowed parasitoids to exploit hosts that feed in exposed positions, and to attack hosts at a younger and numerically more common stage in the host's life cycle. Koinobiont ectoparasitism is envisaged, in some braconid and ichneumonid groups, to occupy an evolutionary transitional position between idiobiosis and endoparasitic koinobiosis; only in the Ichneumonidae have large radiations of koinobiont ectoparasitoids occurred. Endoparasitic koinobiosis is hypothesized as having arisen in the Braconidae in association with lepidopterous/coleopterous hosts, whilst in the major lineage of endoparasitic koinobiont ichneumonids, this habit is hypothesized as having arisen in association with symphytan hosts. The great majority of braconids are koinobiont endoparasitoids, but only about 50% of the Ichneumonidae have this habit. Very few koinobiont braconids develop as endoparasitoids of hymenopterous hosts, although many endoparasitic ichneumonids attack Hymenoptera. However, lineages of the Braconidae have radiated to exploit adult insects and exopterygote nymphs; ichneumonids do not utilize such hosts.  相似文献   

2.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

3.
4.
5.
Three species of the Aphidiinae (Hymenoptera: Braconidae) are reported for the first time in Korea: Aphidius rhopalosiphi de Stefani-Perez, 1902, Aphidius uzbekistanicus Luzhetzki, 1960 and Lysiphlebus orientalis Starý and Rakhshani, 2010. Their diagnosis, photographs and host list are included.  相似文献   

6.
Abstract The subfamily Dirrhopinae (Hymenoptera: Braconidae) is recorded for the first time from the Australian region on the basis of Dirrhope minor Belokobylskij collected at light from several sites in northern Queensland. The species is redescribed and a discussion of relationships, distribution and biology of the subfamily is presented.  相似文献   

7.
8.
A new subfamily of ichneumonids, Palaeoichneumoninae, is described from the Lower Cretaceous of Transbaikalia (Baisa locality) and Mongolia (Bon Tsagan and Kholbotu Gol localities). The new subfamily is intermediate between the archaic subfamily Tanychorinae and the Recent Ichneumonidae. It includes 12 new species, described in three new genera: Palaeoichneumon freja gen. et sp. nov., P. ornatus sp. nov., P. danu sp. nov., P. micron sp. nov., P. mirabilis sp. nov., P. tenebrosus sp. nov., P. townesi sp. nov., Rudimentifera mora gen. et sp. nov., R. suspecta sp. nov., Dischysma maculata gen. et sp. nov., D. similis sp. nov., and D. ramulata sp. nov.  相似文献   

9.
Phylogenetic relationships among early crinoids are evaluated by maximizing parsimonious‐informative characters that are unordered and unweighted. Primarily Tremadocian–Darriwilian (Early–Middle Ordovician) taxa are analysed. Stratigraphic congruence metrics support the best phylogenetic hypothesis derived using parsimony methods. This study confirms the traditionally recognized lineages of Palaeozoic crinoids and provides new information on the branching order of evolving lineages. Camerates are basal crinoids with progressively more tipward groups (from an Ordovician perspective) being protocrinoids, cladids (paraphyletic), hybocrinids and disparids. The Protocrinoida should be maintained, but the Aethocrinida should be placed within the Cladida. The results of this study identify phylogenetic structure amongst the major early crinoid lineages and delineate the relative positions of crinoid higher taxa along a tree. Each valid higher taxon discussed herein requires a comprehensive treatment to delimit within‐lineage phylogenetic relationships.  相似文献   

10.
The phylogeny of the subfamily Ophioninae (Hymenoptera: Ichneumonidae) is investigated using molecular markers and morphological characters. We analysed the mitochondrial DNA CO1 and the nuclear 28S D2–D3 gene fragments for 74 species of Ophioninae from 25 out of the 32 recognized genera, which collectively represent 98% of described species diversity of the subfamily. Molecular markers were analysed separately and combined, with or without the adjunction of a matrix of 62 morphological characters using Bayesian inference. Our results reveal three distinct lineages, each including one of most speciose genera: Ophion, Enicospilus and Thyreodon. The comparison of the molecular data, and combined molecular plus morphological data led to the definition of the three tribes: Ophionini stat. rev. (Ophion Alophophion Rhopalophion Xylophion Afrophion); Enicospilini stat. rev. (Enicospilus Laticoleus Dicamptus Hellwigiella); and Thyreodonini tribe nov. (Thyreodon Dictyonotus Rhynchophion). The possible association of other genera to one or another of these lineages is discussed. Ophion is a polyphyletic assemblage and requires a further revision to define the delimitation with close genera. The enigmatic Old World genus Skiapus is strongly supported as belonging to the Ophioninae, although its placement within the subfamily is ambiguous as a result of its derived genotype and phenotype. Finally, we propose a biogeographical scenario supported by this phylogeny and based on the limited available fossil data.  相似文献   

11.
The phylogeny of the fungus gnat tribe Exechiini (Diptera: Mycetophilidae) is reconstructed based on the combined analysis of five nuclear (18S, two parts of 28S, CAD, EF1α) and two mitochondrial (12S, COI) gene markers. According to known fossil record, and recent higher‐level phylogenies, the tribe constitutes the most apomorphic, distinctly monophyletic clade of the family Mycetophilidae. The tribe originated in the Paleogene and apparently quickly diversified in the Neogene with an unusual rapid radiation of complex male terminalia. Earlier attempts to reconstruct the phylogeny of the tribe, based on both morphology and molecular methods, have not yielded reliable hypotheses, neither in terms of resolution nor in terms of support for major clades. Increased taxon sampling and wider gene sampling have been suggested to achieve better phylogenetic resolution. Aiming at this, we present new phylogenies, for the first time with all known genera and subgenera of Exechiini represented. While many terminal intergeneric relationships are well supported, both in maximum likelihood and in Bayesian analyses, most of the major, deeper clades remain poorly supported. We suggest that a rapid radiation event close to the root may be causing the low resolution at this level in the phylogeny. This contrasts parallel phylogenies of the older subfamilies and tribes of the family Mycetophilidae, where traditional clades have usually been recovered with high support. Further in‐depth studies into the evolutionary history of the tribe are needed to enlighten and coalesce the specific phenomena driving their unique morphological, genetic and phylogeographic histories.  相似文献   

12.
为克隆家蚕Bombyx mori Piwi亚家族蛋白基因cDNA全长序列,分析其分子特征和表达模式,探究Piwi亚家族蛋白在家蚕中的生理功能,本研究利用已知物种的Piwi亚家族蛋白搜索家蚕基因组,预测获得家蚕Piwi亚家族蛋白基因siwi1和siwi2,采用RACE技术克隆siwi1和siwi2的全长cDNA序列,利用ORFfinder、Gene-Explorer、InterPro等分析其分子特征;其次,利用已知的所有物种Piwi蛋白及其类似物Piwil构建系统发育树;最后,通过荧光定量PCR技术检测了siwi1和siwi2在丝腺、马氏管、中肠、头部、卵巢和精巢以及不同发育时期(卵、1~5龄幼虫、蛹、成虫)的表达水平,结果显示,克隆获得了siwi1 cDNA全长3 277 bp,包含部分5′UTR、完整的开放阅读框ORF和3′UTR,获得了siwi2的部分序列,其中siwi1对应BmPiwi,siwi2对应BmAgo3。系统发育结果显示,家蚕Piwi亚家族蛋白与乳草长蝽Oncopeltus fasciatus、黑腹果蝇Drosophila melanogaster、橘小实蝇Bactro...  相似文献   

13.
The morphology of the male genitalia of 46 Agathidinae species belonging to 20 genera has been investigated. Samples from various geographical regions were used to discover the evolution of the male genitalia within the subfamily Agathidinae. Those male genitalia may contain important phylogenetic information at least in certain groups of Braconidae. For the New World, three of four investigated species of Cremnops (C. haematodes, C. montrealensis and C. vulgaris) could suggest the form of the new genus with the other members of New World Cremnops, partly because of the deviating morphology of the male genitalia. Comparative morphology of the male genitalia of Bassus confirms that it is polyphyletic. The status of Lytopylus (L. erythrogaster) is again actualised. Once synonymised as Aerophilopsis, this species could be excluded from other Lytopylus species. The statistical analysis showed that smaller specimens (<6.67 mm) give less details on the morphology of the male genitalia comparing to larger.  相似文献   

14.
The aphid subfamily Hormaphidinae is a good candidate for the study of the evolution of insect – plant relationships. Most hormaphidine species depend on woody primary host plants and woody or herbaceous secondary host plants, and represent high host specificity, especially to their primary hosts. No detailed molecular phylogeny of Hormaphidinae has been reported, and the taxonomic positions of some taxa in this group remain unclear. To reconstruct major phylogenetic relationships and to understand the evolution of host association patterns for major lineages, we present the first detailed molecular phylogeny of Hormaphidinae, as inferred from nuclear and mitochondrial DNA sequences, using maximum parsimony, maximum likelihood, and Bayesian methods. The monophyly of Hormaphidinae and its three traditional tribes was supported, and a sister relationship between Hormaphidini and Nipponaphidini was suggested. Most inner relationships within tribes were also supported, and some novel relationships were revealed. Two subtribes of Cerataphidini are proposed. Divergence times estimated using a Bayesian approach indicate that tribal diversifications occurred during the Late Cretaceous and were coincident with the appearance of their primary host plants. The current pattern of secondary host association for the three tribes may have evolved in different time ranges. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 73–87.  相似文献   

15.
The phylogenetic relationships between genera of the Polysphincta group of Pimplinae (Ichneumonidae) were surveyed using molecular markers, partial sequences of cytochrome c oxidase I (COI), 28S rRNA and elongation factor 1α, and maximum likelihood and Bayesian approaches to obtain a robust phylogenetic hypothesis to understand the evolution of the group. The Polysphincta group was recovered as monophyletic, although relationships between genera were different from previous hypotheses based on morphological data. Within the Polysphincta group, three major clades were recognized and phylogenetic relationships among them were well resolved as (Schizopyga subgroup + (Acrodactyla subgroup + Polysphincta subgroup)). The Schizopyga subgroup consisted of the genera Piogaster, Schizopyga, Zabrachypus and Brachyzapus. As the genus Schizopyga was found to be polyphyletic, the genus Dreisbachia, which had been synonymized under Schizopyga, was resurrected and Iania gen.n. is proposed for Dreisbachia pictifrons, to maintain monophyletic genera. Species of the Schizopyga subgroup utilize spiders constructing egg‐laying chambers or funnel webs as hosts. The genus Piogaster was not recovered as the sister to all other members of the genus group, unlike previous hypotheses, but was nested in this clade as (Zabrachypus + ((Brachyzapus + Schizopyga) + (Dreisbachia + (Iania + Piogaster)))). Members of the Acrodactyla and Polysphincta subgroups attack spiders that weave aerial webs. The host range of the former is centred on tetragnathid and linyphiid spiders, the host range of the latter seems to centre mainly on orb‐weaving araneids and partly on theridiids weaving three‐dimensional (3D) irregular webs. Based on the obtained phylogeny of the group, the evolution of larval and cocoon morphology, and the mode of parasitism are discussed. Acrodactyla varicarinata Uchida & Momoi and A. inoperta Kusigemati are transferred to the genus Megaetaira ( comb.n.). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:0AB1086F‐9F23‐4057‐B7ED‐3A3943E19C61 .  相似文献   

16.
Aim Various data sets and methods of analysis were combined to produce the first comprehensive molecular phylogeny of the genus Tuber and to analyse its biogeography. Location Europe, North Africa, China, Asia, North America. Methods Phylogenetic relationships among Tuber species were reconstructed based on a data set of internal‐transcribed spacer (ITS) sequences and various phylogenetic inference methods, specifically maximum parsimony, Bayesian analysis and neighbour joining. Tajima’s relative rate test showed that Tuber 18S rRNA, 5.8S rRNA, 5.8S‐ITS2 rRNA and β‐tubulin sequences evolved in a clock‐like manner. These genes, combined or not, were employed for molecular clock estimates after construction of linearized trees using mega 3.1. We reconstructed ancestral areas in the Northern Hemisphere by means of a dispersal–vicariance analysis (diva 1.1) based on current distribution patterns of the genus Tuber determined from the literature. Results The resulting molecular phylogeny divided the genus Tuber into five distinct clades, in agreement with our previously published studies. The Puberulum, Melanosporum and Rufum groups were diversified in terms of species and geographical distribution. In contrast, the Aestivum and Excavatum groups were less diversified and were located only in Europe or North Africa. Using a global molecular clock analysis, we estimated the divergence times for the origin of the genus and for the origin of several groups. diva inferred nine dispersal events and suggested that the ancestor of Tuber was originally present in Europe or was widespread in Eurasia. Equally optimal distributions were obtained for several nodes, suggesting different possible biogeographical patterns. Main conclusions Our analyses identified several discrepancies with the classical taxonomy of the genus, and we propose a new phylogenetic classification. According to molecular clocks, the radiation of the genus Tuber could have started between 271 and 140 Ma. Used in combination with the results obtained from time divergence estimates, this allows us to propose two equally probable scenarios of intra‐ and inter‐continental diversification of the genus according to the geographic distribution of the most recent common ancestor in Europe or Eurasia. The biogeographical patterns imply intra‐continental dispersal events between Europe and Asia and inter‐continental dispersal events between North America and Europe or Asia, which are compatible with land connections during the Tertiary.  相似文献   

17.
The enormous cytochrome oxidase subunit I (COI) sequence database being assembled from the various DNA barcoding projects as well as from independent phylogenetic studies constitutes an almost unprecedented amount of data for molecular systematics, in addition to its role in species identification and discovery. As part of a study of the potential of this gene fragment to improve the accuracy of phylogenetic reconstructions, and in particular, exploring the effects of dense taxon sampling, we have assembled a data set for the hyperdiverse, cosmopolitan parasitic wasp superfamily Ichneumonoidea, including the release of 1793 unpublished sequences. Of approximately 84 currently recognized Ichneumonoidea subfamilies, 2500 genera and 41,000 described species, barcoding 5'-COI data were assembled for 4168 putative species-level terminals (many undescribed), representing 671 genera and all but ten of the currently recognized subfamilies. After the removal of identical and near-identical sequences, the 4174 initial sequences were reduced to 3278. We show that when subjected to phylogenetic analysis using both maximum likelihood and parsimony, there is a broad correlation between taxonomic congruence and number of included sequences. We additionally present a new measure of taxonomic congruence based upon the Simpson diversity index, the Simpson dominance index, which gives greater weight to morphologically recognized taxonomic groups (subfamilies) recovered with most representatives in one or a few contiguous groups or subclusters.  相似文献   

18.
The subfamily Microgastrinae is a highly diversified group of parasitoid wasps that attacks all of the different groups of Lepidoptera. We explore here the phylogenetic signal in three gene (mitochondrial COI and 16S, and nuclear 28S) fragments as an assessment of their utility in resolving generic relationships within this species-rich insect group. These genes were chosen because their level of sequence divergence is thought to be appropriate for this study and because they have resolved relationships among other braconid wasps at similar taxonomic levels. True phylogenetic signal, as opposed to random signal or noise, was detected in the 16S and 28S data sets. Phylogenetic analyses conducted on each microgastrine data set, however, have all resulted in poorly resolved trees, with most clades being supported by low bootstrap values. The phylogenetic signal, if present, is therefore concentrated on a few well-supported clades. Some rapidly evolving sites may be too saturated to be phylogenetically useful. Nonetheless, the sequence data (nearly 2300 nucleotides) used here appear to exhibit the appropriate level of variation, theoretically, to resolve the relationships studied. Moreover, the clades that are well supported by the data are usually supported by more than one data set and represent different levels of sequence divergence. We suggest that the lack of phylogenetic signal observed is an indication of the presence of many short internal branches on the phylogeny being estimated, which in turn might be the result of a rapid diversification of the taxa examined. Relative specialization of diet, which is typically associated with parasitic behavior, is believed to result in high radiation rates, which may have been especially high in microgastrine wasps because of the great diversity of their lepidopteran hosts. This hypothesis of a rapid diversification caused by an abundance of host species remains speculative and more data will be needed to test it further.  相似文献   

19.
The oviposition behaviour of four ant parasitoids was observed and filmed for the first time. The movies are available from YouTube (search for Elasmosoma, Hybrizon, Kollasmosoma and Neoneurus). Two of the observed species (Neoneurus vesculussp. n. and Kollasmosoma sentumsp. n.) are new to science. A third species (Neoneurus recticalcarsp. n.) is described from Slovakia and Norway. Keys to the Palaearctic species of the genera Neoneurus and Kollasmosoma are added.  相似文献   

20.
We present a comprehensively sampled three‐gene phylogeny of the monophyletic Forcipulatacea, one of three major lineages within the crown‐group Asteroidea. We present substantially more Southern Hemisphere and deep‐sea taxa than were sampled in previous molecular studies of this group. Morphologically distinct groups, such as the Brisingida and the Zoroasteridae, are upheld as monophyletic. Brisingida is supported as the derived sister group to the Asteriidae (restricted), rather than as a basal taxon. The Asteriidae is paraphyletic, and is broken up into the Stichasteridae and four primary asteriid clades: (1) a highly diverse boreal clade, containing members from the Arctic and sub‐Arctic in the Northern Hemisphere; (2) the genus Sclerasterias; (3) and (4) two sister clades that contain asteriids from the Antarctic and pantropical regions. The Stichasteridae, which was regarded as a synonym of the Asteriidae, is resurrected by our results, and represents the most diverse Southern Hemisphere forcipulatacean clade (although two deep‐sea stichasterid genera occur in the Northern Hemisphere). The Labidiasteridae is artificial, and should be synonymized into the Heliasteridae. The Pedicellasteridae is paraphyletic, with three separate clades containing pedicellasterid taxa emerging among the basal Forcipulatacea. Fossils and timing estimates from species‐level phylogeographic studies are consistent with prior phylogenetic hypotheses for the Forcipulatacea, suggesting diversification of basal taxa in the early Mesozoic, with some evidence for more widely distributed ranges from Cretacous taxa. Our analysis suggests a hypothesis of an older fauna present in the Antarctic during the Eocene, which was succeeded by a modern Antarctic fauna that is represented by the recently derived Antarctic Asteriidae and other forcipulatacean lineages. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 646–660.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号