首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The landscape of the Australian Wet Tropics can be described as "islands" of montane rainforest surrounded by warmer or more xeric habitats. Historical glaciation cycles have caused expansion and contraction of these rainforest "islands" leading to consistent patterns of genetic divergence within species of vertebrates. To explore whether this dynamic history has promoted speciation in endemic and diverse groups of insects, we used a combination of mtDNA sequencing and morphological characters to estimate relationships and the tempo of divergence among Australian representatives of the dung beetle genus Temnoplectron. This phylogenetic hypothesis shares a number of well-supported clades with a previously published phylogenetic hypothesis based on morphological data, though statistical support for several nodes is weak. Sister species relationships well-supported in both tree topologies, and a tree obtained by combining the two data sets, suggest that speciation has mostly been allopatric. We identify a number of speciation barriers, which coincide with phylogeographic breaks found in vertebrate species. Large sequence divergences between species emphasize that speciation events are ancient (pre-Pleistocene). The flightless, rainforest species appear to have speciated rapidly, but also in the distant past.  相似文献   

2.
Aim We describe the changes in species richness, rarity and composition with altitude, and explore whether the differences in Scarabaeinae dung beetle composition along five altitudinal transects of the same mountain range are related to altitude or if there are interregional differences in these altitudinal gradients. Location Field work was carried out on the eastern slope of the eastern Cordillera, Colombian Andes, between Tamá Peak to the north, in the Tamá National Park (07°23′ N, 72°23′ W) and the San Miguel River (00°28′ N, 77°17′ W) to the south. Methods Sampling was carried out between February 1997 and November 1999 in five regions spanning elevation gradients. In each gradient, six sites were chosen at 250 m intervals between 1000 and 2250 m a.s.l. Results We found a curvilinear relationship between altitude and mean species richness, with a peak in richness at middle elevations. However, the diversity of dung beetle assemblages does not seem to be related to the interregional differences in environmental conditions. The number of geographically restricted species is negatively and significantly related to altitude, with geographically restricted species more frequent at low altitude sites. Ordination delimited the two main groups according to altitude: one with all the highest sites (1750–2250 m a.s.l.) and a second group with the remaining sites (< 1750 m a.s.l.). Analysis of species co‐occurrence shows that these dung beetle assemblages seem to be spatially structured when all sites have the same probability of being chosen. In contrast, the spatial structure of species assemblages seems to be random when the probability of choosing any site is proportional to its altitude. Main conclusions The altitude of sites is the main factor that influences the diversity of these dung beetle assemblages. The peak in species richness at middle elevations, the higher number of geographically restricted species at lower altitudinal levels, and the compositional differences along these mountain gradients seem to result from the mixing at these altitudes of dung beetle assemblages that have different environmental adaptations and, probably, different origins. The relevance of altitude in these assemblages is related to the limited role of these Neotropical high altitude environments as centres of refuge and vicariance for a monophyletic group of warm‐adapted species, for which the vertical colonization of these high mountain environments by lineages distributed at lower altitudes would have been very difficult.  相似文献   

3.
Abstract The dung beetle genus Phanaeus as currently recognized by Edmonds (1994) consists of 51 species placed in 13 species groups and two subgenera. Here, I examine the phylogeny and biogeography of this genus by analysing the mitochondrial cytochrome oxidase subunit I (530 bp), nuclear large subunit ribosomal RNA (28S, D2 region), and 67 morphological characters for 28 species of Phanaeus. Both maximum parsimony and Bayesian analyses from the combined data yielded well‐resolved trees, although low bootstrap and posterior probability support were found for basal nodes. The phylogenetic hypotheses presented here suggest that the subgenera Phanaeus s.str. and Notiophanaeus should each be elevated to the status of full genus. With the exception of the eucraniine outgroups, the paleano species group of the genus Phanaeus is recovered as sister to all other taxa, including the outgroups Oxysternon, Sulcophanaeus and Coprophanaeus. High bootstrap values and posterior probabilities supported the species groups endymion, tridens and vindex. Biogeographical analyses suggest an ancestral distribution for Phanaeus in the Andes in South America, although numerous dispersal events evidently have produced a complicated biogeographical history.  相似文献   

4.
Species richness and abundance of dung beetles were assessed across a range of bait types that acted as surrogates for the food resources available in Chobe National Park, Botswana. These bait types were comprised of the dung of pig (omnivore), cattle (ruminant herbivore dropping fine-fiberd pads), sheep (pellet-dropping ruminant herbivore), and elephant (monogastric, nonruminant herbivore producing coarse-fibered droppings), and chicken livers (carrion). Species richness was similar between traps baited with pig, cattle, and elephant dung but was relatively lower in those baited with sheep dung and carrion. In traps baited with pig dung, abundance was relatively greater than in all other bait types. A cluster analysis of species abundance distributions for the 30 most abundant species identified four different patterns of bait type association at a 60% level of similarity. All but 1 of the 15 species in cluster A were attracted primarily to the dung of omnivores and pad-dropping ruminant herbivores (pig and cattle). All seven species of cluster B were attracted primarily to coarse-fibered, nonruminant herbivore dung (elephant). All four species of cluster C were primarily carrion and pig dung associated, whereas all four species of cluster D were carrion specialists. In conclusion, the most abundant species were attracted to all bait types, but most species were largely specialized to different dung types or carrion, with dung attracting the majority of the fauna in terms of both species richness and abundance.  相似文献   

5.
This study represents the first evidence of mercury contamination in the family Scarabaeidae, with a close focus on Coprophanaeus lancifer, the largest copro-necrophagous beetle in South America. This work shows the repartition of total mercury (THg) in the insect body and lays the groundwork for additional future studies. Abstract in Spanish is available with online material.  相似文献   

6.
The southern African genus Macroderes Westwood is revised. Six new species, M. amplior n. sp., M. minutus n. sp., M. endroedyi n. sp., M. namakwanus n. sp., M. foveatus n. sp., and M. cornutus n. sp., are described.The neotype of M. bias (Olivier) is designated.Two new synonymies are established: M. pilula Sharp is a junior synonym of M. bias (Olivier), and M. westwoodi Preudhomme de Borre is a junior synonym of M. undulatus Preudhomme de Borre. A key to species and notes on biology and distribution are given.  相似文献   

7.
ABSTRACT.
  • 1 The dung colonization and dung burial behaviour of twelve crepuscular/nocturnal tunnelling (paracoprid) species of beetles were examined in order to identify mechanisms which might facilitate resource (dung) partitioning. The species were selected from a diverse assemblage of dung beetles, the members of which coexist in the sandy-soil regions of Natal, South Africa.
  • 2 The pattern of dung colonization in relation to dung age was examined in the field using baited pitfall traps. Some species, e.g. Onitis deceptor Peringuey, Catharsius tricornutus De Geer and Copris elphenor Klug, showed a marked preference for fresh dung (1–2 days old) whereas other species, e.g. O. viridulus Boheman and Copris fallaciosus Gillet, preferred older dung (3–7 days old).
  • 3 Two distinct patterns of dung burial were recognized. In the Coprini, dung burial was complete within 24–48h of pad colonization, and the level of dung burial was similar in the laboratory and in the field. In the Onitini, dung burial occurred progressively over a 12-day period, although the timing of initiation of dung burial varied between species: in O. deceptor nearly all individuals had begun burial within 2 days of pad colonization, whereas only 20% of O. viridulus had commenced dung burial by that time. However, nearly all O. viridulus had buried substantial quantities of dung by day 12.
  • 4 The mass of dung buried per pair by the larger coprine beetles (100–300 g) and onitine beetles (400–1000 g) suggests that there is potential for inter- and intraspecific competition, even in pads colonized by relatively few beetles. The colonization and use of dung of different ages are discussed as means of resource partitioning in relation to the relative abilities of species to compete for dung.
  相似文献   

8.
The Brazilian Atlantic Forest is one of the most diverse environments, but it is also one of the most threatened areas in terms of loss of biodiversity and ecosystem services. Assessment of changes in the community structure during the recovery of forests can be performed using indicator organisms. Dung beetles perform several ecological functions and show high sensitivity to natural and anthropogenic environmental changes. This study aimed to investigate the effect of regeneration time of Atlantic Forest sites on structure of Scarabaeinae assemblages. We sampled dung beetles using ten baited pitfall traps per site, in six sites grouped into three classes of forest regeneration time (~30, ~60 and >80 years) in the southern Brazilian Atlantic Forest, during January 2015. A total of 520 individuals belonging to 16 species and nine genera of dung beetles were sampled. Rarefied species richness did not differ between sites with different regeneration times. Average species richness and abundance of Scarabaeinae was smaller in areas of shorter recovery time. True alpha diversity was higher in areas with intermediate recovery whereas Shannon diversity showed higher values in areas of shorter recovery. Approximately 29?% of the variation in abundance data of Scarabaeinae was explained by environmental variables, with one-third of this variation explained also by spatial predictors. External factors such as landscape management and farming practices in the surroundings must be taken into consideration in management plans and the management of natural areas for the recovery of biodiversity in the Atlantic Forest. These external factors can considerably affect the structure of communities and lead to scenarios of greater diversity in intermediate regeneration sites due to the heterogeneity of the landscape.  相似文献   

9.
Aims The fauna of mountains and their surrounding regions are likely to be influenced principally by two biological processes: horizontal colonization along similar altitudinal levels by elements originating from lineages inhabiting higher latitudes; and vertical colonization by lineages from the same latitude, but at lower altitudes. We examine whether the expected patterns derived from the latter process can be observed in mountain dung beetle assemblages. Specifically, we study the variation in species composition and richness with altitude in five regions spanning elevation gradients, analysing whether the altitudinal rates of change in the number of species and genera differ, and whether beta‐diversity scores for adjacent sites in each altitudinal gradient are different for species and genera. Location Eastern Cordillera of the Colombian Andes. Methods Field work was carried out in 1997–99 at 27 sites in five regions with elevation gradients, with 10–32 pitfall traps placed in each site. For each altitudinal level the numbers of species and genera were analysed with respect to altitude, and the slope of the linear regression between these variables was calculated. The slope of the curve of the altitude against the cumulative number of species and genera was also calculated for each altitudinal gradient to describe the compositional change between adjacent sites (beta diversity). Species and generic slopes were compared using analysis of covariance. The turnover of species along each altitudinal gradient was measured using presence/absence data and Cody's beta‐diversity index between adjacent pairs of sites. A cluster analysis was used to detect faunistically homogeneous groups of localities. Results Species richness always decreased with altitude, although the slopes did not differ significantly from zero. The number of genera also decreased with increasing altitude, but generally at a significantly slower rate than for species. Variation in the species beta‐diversity scores between altitudinal levels did not follow a homogeneous pattern in the different regions. Two main altitudinal groups of sites with a boundary c. 1500–1750 m a.s.l. can be detected with respect to faunistic similarity. Low‐ and mid‐altitude sites are inhabited by all of the genera (19) and 80% of all species collected. Eight genera and 61 species (c. 60% of the total) are unable to inhabit high‐altitude sites, and only 20 species appear to be exclusive to these high‐altitude environments (> 2000 m a.s.l.). Main conclusions The dominant processes explaining dung beetle composition in the high north‐eastern Andean mountains are probably those of vertical colonization. The limited role of horizontal colonization processes, or colonization from northern or southern lineages, could be a consequence of the isolation and recent geological origin of these mountains.  相似文献   

10.
Despite being the focus of an international research effort spanning decades, the spatial distribution of southern African scarab beetles remains poorly documented. As well as reinforcing the magnitude of the challenge facing biodiversity scientists, this raises real concerns about best practice conservation strategies in the absence of detailed distribution information. However, dung beetles appear to be well represented in established conservation areas. This apparent contradiction could be ascribed to anthropogenic transformation, successful conservation efforts, the presence of dung generalists and reserve-biased or mesic-biased dung beetle collection efforts. It is suggested that all of the above contribute to the observed pattern to varying degrees. The implications of selecting areas that are either rich in species, contain rare species or contain taxonomically distinct species from a group whose taxonomy is well known but for which inadequate distribution data exist are explored. Best practice, in the face of inadequate data, appears to revolve around a subtle interplay between advantages and disadvantages associated with data interpolation techniques, reserve selection algorithms that use criteria more robust than database rarity (such as taxonomic distinctiveness) and the long-term economic costs of proceeding with the data at hand versus investing in biological surveys.  相似文献   

11.
12.
13.
We studied the phylogeny and systematics of the tribe Paragini (Diptera: Syrphidae) using morphological and molecular data. The paper presents separate parsimony analyses of both adult morphological characters and partial DNA sequence data from mitochondrial cytochrome c oxidase I and nuclear ribosomal 28S rRNA gene, as well as a combined analysis of all the data. The data set of morphological characters included some features of the male terminalia (i.e. shape of the ejaculatory apodeme; relative position of elements of the aedeagal complex; shape of surstylar apodeme; shape of the aedeagal apodeme) not previously used in the systematics of the Paragini. The trees obtained from separate parsimony analyses of molecular and morphological data produced almost identical topologies. Four lineages are supported by the combined data set, and we establish two new subgenera, i.e. Serratoparagus Vujić et Radenković subgen. nov., and Afroparagus Vujić et Radenković subgen. nov., and redefine Pandasyopthalmus Stuckenberg, 1954 stat. rev. and Paragus Latreille, 1804, stat. rev. The monophyly of the Pandasyopthalmus clade, including the species fitting neither of the current species groups ( jozanus -group) of Paragini, is established. Diagnoses of all known species groups are presented, including a new arrangement of almost all valid species of Paragini.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 507–536.  相似文献   

14.
The dung beetles (Scarabaeinae) include ca. 5000 species and exhibit a diverse array of morphologies and behaviors. This variation presumably reflects the adaptation to a diversity of food types and the different strategies used to avoid competition for vertebrate dung, which is the primary breeding environment for most species. The current classification gives great weight to the major behavioral types, separating the ball rollers and the tunnelers, but existing phylogenetic studies have been based on limited taxonomic or biogeographic sampling and have been contradictory. Here, we present a molecular phylogenetic analysis of 214 species of Scarabaeinae, representing all 12 traditionally recognized tribes and six biogeographical regions, using partial gene sequences from one nuclear (28S) and two mitochondrial (cox1, rrnL) genes. Length variation in 28S (588-621 bp) and rrnL (514-523 bp) was subjected to a thorough evaluation of alternative alignments, gap-coding methods, and tree searches using model-based (Bayesian and likelihood), maximum parsimony, and direct optimization analyses. The small-bodied, non-dung-feeding Sarophorus+Coptorhina were basal in all reconstructions. These were closely related to rolling Odontoloma+Dicranocara, suggesting an early acquisition of rolling behavior. Smaller tribes and most genera were monophyletic, while Canthonini and Dichotomiini each consisted of multiple paraphyletic lineages at hierarchical levels equivalent to the smaller tribes. Plasticity of rolling and tunneling was evidenced by a lack of monophyly (S-H test, p > 0.05) and several reversals within clades. The majority of previously unrecognized clades were geographical, including the well-supported Neotropical Phanaeini+Eucraniini, and a large Australian clade of rollers as well as tunneling Coptodactyla and Demarziella. Only three lineages, Gymnopleurini, Copris+Microcopris and Onthophagus, were widespread and therefore appear to be dispersive at a global scale. A reconstruction of biogeographical characters recovered 38-48 transitions between regions and an African origin for most lineages. Dispersal-vicariance analysis supported an African origin with links to all other regions and little back-migration. Our results provide a new synthesis of global-scale dung beetle evolution, demonstrating the great plasticity of behavioral and morphological traits and the importance of biogeographic distributions as the basis for a new classification.  相似文献   

15.
Although the preference of dung beetles (Coleoptera: Scarabaeidae) for specific types and conditions of dung has been given substantial attention, little has been done to investigate the potential effects of exotic mammal introduction for game farms or rewilding projects. We used pitfall traps baited with various native and exotic herbivore, carnivore, and omnivore dung to evaluate dung beetle preference in the Great Plains of North America. Additionally, we analyzed of the nutrient quality of each dung type. In total, 9,089 dung beetles from 15 species were captured in 2 yr of sampling. We found significant differences (P < 0.05) in mean dung beetle capture among omnivore, herbivore, and carnivore dung, as well as differences in individual species preference for dung type. Omnivore dung was the most attractive with chimpanzee and human dung having the highest mean capture (291.1 ± 27.6 and 287.5 ± 28.5 respectively). Carrion also was highly attractive with a mean of 231.9 ± 20.6 beetles per trap (N = 8). Our results suggest definitive local preference of carrion in Phanaeus vindex Macleay and Onthophagus hecate (Panzer), while the congener, O. pennsylvanicus (Harold), was rarely captured in carrion and highly preferred omnivore dung. Preference for a specific bait type does not appear to be correlated with dung quality, mammalian diet, or origin of mammal. Results suggest niche segregation by dung type among dung beetle species.  相似文献   

16.
Patterns of avian diversification in southern Asia are poorly understood due to the limited number of phylogenetic and biogeographic studies of endemic groups, mainly due to the dearth of recent tissue samples and a historical taxonomic bias underestimating avifaunal diversity. A systematic analysis of the endemic genus Pteruthius, the shrike-babblers, was undertaken in order to identify basal diagnosable taxa, analyze their phylogenetic relationships, and uncover patterns of diversification within southern Asia. Traditionally considered to be 5 species, a total of 19 distinct taxa of Pteruthius are diagnosable by fixed characters under the phylogenetic species concept-almost a four-fold increase in recognized diversity. Molecular phylogenetic analyses (85% of samples were from museum specimens) recovered a robust phylogeny that was largely congruent using parsimony, likelihood, and bayesian. Initial divergences in each major clade occurred in the early to mid-Pliocene, while the remaining majority of diversification events occurred in the Pleistocene. Within Pteruthius, timings of species divergences across similar geographic regions correspond to both single and multiple Earth history events, illustrating the complexities of continental diversification. A novel biogeographic pattern of species in peripheral areas (Java, W Himalayas, S Vietnam, Assam/Burma) diverging first from those in the core-mainland areas (E Himalayas, Yunnan, N Thailand, Indochina, Malay Peninsula) was uncovered.  相似文献   

17.
18.
Evolution of the Scarabaeini (Scarabaeidae: Scarabaeinae)   总被引:1,自引:0,他引:1  
Abstract. A phylogenetic analysis of the Scarabaeini, based on 244 morphological characters, including 154 multistate and three biological characters, is presented. Tree topologies generated from unweighted data and some weighted algorithms are similar and support only two clades in the tribe representing the genera Scarabaeus L. and Pachylomerus Bertoloni. The only supported subordinate groups treated in this paper as subgenera are Kheper Kirby stat. nov. , Pachysoma MacLeay, Scarabaeolus Balthasar and Sceliages Westwood stat. nov. Drepanopodus Janssens syn. nov. is synonymised with Scarabaeus and six additional names, Madateuchus Paulian, Mnematidium Ritsema, Mnematium MacLeay, Neateuchus Gillet, Neomnematium Janssens and Neopachysoma Ferreira, remain synonyms. A single origin of flightlessness is supported with the subgenus Pachysoma, the most derived lineage in this clade. Rolling dung balls backwards is the ancestral behaviour and predominant mode of food relocation in Scarabaeini, although tunnelling, forward pushing, and carrying also are utilized by some lineages. Pushing food has evolved independently in Sceliages species and S. galenus (Westwood) and a novel mode of forward food relocation by dragging evolved in the subgenus Pachysoma. Feeding on wet dung is the plesiomorphic condition and maintained by the majority of species in the tribe. The most unusual feeding behaviours in the tribe are represented by the obligate millipede-feeding species of Sceliages and the dry dung pellet and/or detritus feeders of Pachysoma.  相似文献   

19.
Between-group α- and β-diversity differences were derived from species-area relationships fitted to field data. The accuracy of spatial richness variation predictions based on area size was also checked. The log-log model (log S = c + z log A) was found to be the best-fit linear model, with slopes (z) ranging from 0.089 to 0.142. Between-group comparisons of z (slope) and q (intercept) parameters, using the S = q + cAz curvilinear regression model, corroborated early results, indicating a lower β-diversity (slope) for Scarabaeinae than for Geotrupinae and Aphodiinae. The latter group, probably more sensitive to environmental heterogeneity, should contribute more to species richness in large areas. α-Diversity is greater for Aphodiinae, more relevant to local diversity (1 km2), than for Scarabaeinae and considerably greater for these two groups than for Geotrupinae. As earlier results show that the richness of a single dung pat is rather more a function of the Scarabaeinae species pool, richness on dung pat scales is probably due more to the between-dropping mobile Scarabaeinae, while Aphodiinae contribute mainly to local and regional pool richness. Nearly 88 % of the total richness variance is explained by area size. This percentage decreases to 37 % when the spatial structure of area size and species number are extracted. The corresponding figures for Scarabaeinae, Aphodiinae and Geotrupinae are 44, 22 and 31 %, respectively.  相似文献   

20.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号