首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3′-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.  相似文献   

2.
Irradiation of Arabidopsis thaliana ecotypes C24, Wassilewskija (Ws) and Columbia-0 (Col-0) with supplementary ultraviolet-A+B (UV-A+B) radiation revealed ecotype-specific differences in expression of the gene for the pathogenesis-related protein PR-5. C24 showed an increased expression level of PR-5 (5- and 20-fold higher compared with Col-0 and Ws, respectively). Expression of other molecular markers such as CHS (encoding chalcone synthase), MEB5.2 [encoding a gene strongly up-regulated by ultraviolet-B (UV-B)] and PYROA [encoding a pyridoxine (Vitamin B6) biosynthesis enzyme] only showed slight differences between ecotypes. Oxidative stress during UVA+B exposure was monitored by staining for H2O2. This analysis also revealed important ecotype-specific differences. 'H2O2 hot spots' were found in C24, whereas an even distribution of H2O2 was found in Ws and Col-0. Necrotic lesions also appeared on C24 leaves after prolonged UV-B exposure. There was a reverse correlation between the H2O2 steady-state concentration and the PR-5 gene expression; Ws showed the highest level of H2O2 accumulation but the lowest expression level of the PR-5 gene. Furthermore, application of paraquat on the rosettes led to similar PR-5 expression and H2O2 accumulation patterns as were found after UV-A+B irradiation. The observed ecotypic differences were also reflected in a statistically significant UV-B-dependent decrease in biomass, rosette size and leaf area for Ws, but not for C24 and Col-0. Our results show that a significant ecotype-specific genetic variability in general UV-B responses in Arabidopsis exists. Moreover, the signal transduction or gene regulation pathway for PR-5 differs from the other molecular markers used in this study.  相似文献   

3.
4.
拟南芥活性氧不敏感型突变体的筛选与特性分析   总被引:4,自引:0,他引:4  
采用 EMS化学诱变方法与 H2 O2 氧化胁迫选择 ,以根在重力作用下的弯曲生长为指标 ,筛选得到拟南芥活性氧不敏感型突变体。对突变体杂交后代遗传分析表明 ,突变株对活性氧不敏感性状为隐性单基因突变所致 ;生理生化分析表明突变体对 H2 O2 有很强的抗性 ,表现为气孔开度对 H2 O2 不敏感和 H2 O2 胁迫时较低的膜脂过氧化水平。运用 L SCM技术并结合 H2 O2 荧光探针 H2 DCFDA检测外源 ABA诱导保卫细胞内产生 H2 O2 的情况 ,结果显示突变体体内荧光强度比对照低 ,暗示了突变体体内消除 H2 O2 的能力可能有所提高 ,增强了植株对氧化胁迫的抗性。拟南芥活性氧不敏感突变体的筛选 ,不仅为人们深入研究活性氧在细胞内的作用提供良好的实验材料 ,而且还将大大加深人们对信号转导途径的再认识  相似文献   

5.
The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.  相似文献   

6.
7.
Four Arabidopsis thaliana ecotypes were grown at 14 degrees C and 22 degrees C under two light conditions (300 microE m-2 s-1 or 150 microE m-2 s-1) and the effect of temperature on their growth and flowering time was studied. Flowering occurred within 31 days (experimental period) at 22 degrees C, whereas a decrease in growth temperature resulted in a delay in flowering (63 days) under both light conditions. At 14 degrees C, membrane-bound APX (tAPX) activity decreased and total chlorophyll (Chl) content increased with growth under both light conditions. However, at 22 degrees C, the tAPX activity increased and total Chl content decreased with growth under both light conditions. These results suggest that at 22 degrees C oxidative stress was high under both light conditions and consequently Chl content decreased under stressful conditions or vice versa for all the four A. thaliana ecotypes studied. Under both the temperature and light conditions, soluble APX activity showed an irregular pattern of growth. The increase in tAPX activity, with growth only at 22 degrees C but not at 14 degrees C, suggests increased H2O2 formation in flowering plants at 22 degrees C for all the four A. thaliana ecotypes studied. Before flowering, the tAPX activity showed a significantly negative correlation with flowering time. Higher oxidative stress in the lower-latitude ecotypes might induce earlier flowering than the higher-latitude ecotypes. From these results, we propose a hypothesis that H2O2 is one of the possible factors in flower induction.  相似文献   

8.
Content of reactive oxygen species (ROS): O2*-, H2O2 and OH* as well as activities of antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) were studied in leaves of Arabidopsis thaliana ecotype Columbia, treated with Cu excess (0, 5, 25, 30, 50, 75, 100, 150 and 300 microM). After 7 days of Cu action ROS content and the activity of SOD and POX increased, while CAT activity decreased in comparison with control. Activities of SOD, POX and CAT were correlated both with Cu concentration (0-75 microM) in the growth medium and with OH* content in leaves. Close correlation was also found between OH* content and Cu concentration. Oxidative stress in A. thaliana under Cu treatment expressed in elevated content of O2*-, H2O2 and OH* in leaves. To overcome it very active the dismutase- and peroxidase-related (and not catalase-related, as in other plants) ROS scavenging system operated in A. thaliana. Visual symptoms of phytotoxicity: chlorosis, necrosis and violet colouring of leaves as well as a reduction of shoot biomass occurred in plants.  相似文献   

9.
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.  相似文献   

10.
弱光限制植物的光合作用,降低了光合作用效率,造成农业产量下降.本文主要研究了弱光处理早期,拟南芥光合作用相关指标的变化.研究中发现在弱光处理的早期,植株生长表型和最大光化学效率(Fv/Fm)没有明显变化,实际光化学效率Y(Ⅱ)以及光系统电子传递效率(ETR)下降较明显.此外,弱光处理原生质体,利用2 ',7'-二氯二氢荧光素二乙酯(dichlorofluorescin diacetate,H2DCF-DA)染色,共聚焦显微镜观察,发现细胞中有较明显的活性氧(ROS)合成,且定位于叶绿体.该研究结果为植物弱光耐受性的研究提供理论依据.  相似文献   

11.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

12.
13.
One of the physiological functions of cellular prion protein(PrP C )is believed to work as a cellular resistance to oxidative stress,in which the octarepeats region within PrP plays an important role.However,the detailed mechanism is less clear.In this study,the expressing plasmids of wild-type PrP (PrP-PG5)and various PrP mutants containing 0(PrP-PG0),9(PrP-PG9)and 12(PrP-PG12)octarepeats were generated and PrP proteins were expressed both in E.coli and in mammalian cells.Protein aggregation and formation of carbonyl groups were clearly seen in the recombinant PrPs expressed from E.coli after treatment of H2O2.MTT and trypan blue staining assays revealed that the cells expressing the mutated PrPs within octarepeats are less viable than the cells expressing wild-type PrP.Statistically significant high levels of intracellular free radicals and low levels of glutathione peroxidase were observed in the cells transfected with plasmids containing deleted or inserted octarepeats.Remarkably more productions of carbonyl groups were detected in the cells expressing PrPs with deleted and inserted octarepeats after exposing to H2O2.Furthermore,cells expressing wild-type PrP showed stronger resistant activity to the challenge of H2O2 at certain extent than the mutated PrPs and mock. These data provided the evidences that the octarepeats number within PrP is critical for maintaining its activity of antioxidation.Loss of its protective function against oxidative stress may be one of the possible pathways for the mutated PrPs to involve in the pathogenesis of familial Creutzfeldt-Jacob diseases.  相似文献   

14.
15.
以拟南芥ceo1、突变体为材料,研究CEO1(clone eight-one)在镉胁迫条件下作用的结果表明,与野生型植株相比,150μmol·L^-1的CdCl2处理10d后,拟南芥ceo1突变体表现为植株生长矮小,叶片卷曲发黄,根系短小。镉处理后,拟南芥突变体幼苗叶中H2O2的积累较多;镉处理1h后的突变体中抗坏血酸过氧化物酶(APX)活性明显上升,至2h时又开始下降,而镉处理2h后,野生型APX活性才开始增加。镉处理2h后的野生型的谷胱甘肽还原酶(GR)显著增加,而突变体无明显变化。两种类型拟南芥的超氧化物歧化酶(SOD)与过氧化氢酶(CAT)的活性没有明显差异。  相似文献   

16.
In yeast and mammals, selective vacuolar delivery and degradation of whole mitochondria, or mitophagy, represents an important quality control system and is achieved by a cargo recognition mechanism enabling selective elimination of dysfunctional mitochondria. As photosynthetic organelles that need light for energy production, plant chloroplasts accumulate sunlight-induced damage. Plants have evolved multiple mechanisms to avoid, relieve, or repair chloroplast photodamage. Our recent study showed that vacuolar degradation of entire chloroplasts, termed chlorophagy, is induced to degrade chloroplasts that are collapsed due to photodamage. Our results underscore the involvement of autophagy in the quality control of endosymbiotic, energy-converting organelles in eukaryotes.  相似文献   

17.
18.
多环芳烃荧蒽诱导拟南芥氧化胁迫   总被引:3,自引:0,他引:3  
选用模式植物拟南芥为材料,以四环的多环芳烃(PAHs)荧蒽为研究对象,从植物对非生物胁迫响应紧密相关的抗氧化酶及膜保护系统的变化入手,研究了植物对多环芳烃胁迫的生理响应.结果表明:荧蒽胁迫下拟南芥经历了氧化胁迫和膜脂过氧化过程.0.75 mmol·L-1的荧蒽使拟南芥光合作用过程受到抑制;1.00 mmol·L-1的荧蒽使拟南芥丙二醛(MDA)含量极显著增加, 抗坏血酸过氧化物酶(APX)活性极显著下降, 膜脂过氧化作用加剧,1.25 mmol·L-1的荧蒽使拟南芥过氧化物酶(POD)活性极显著下降,H2O2在细胞内累积,拟南芥明显受害.  相似文献   

19.
20.
Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the Pfr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when applied at the beginning of the main photoperiod far-red light did not affect the number of rosette leaves. Different effects on the plant form dependent on the time of treatment with far-red light-breaks are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号