首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator–prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how the interference among predators affects the dynamics and structure of the predator–prey community. We perform a detailed numerical bifurcation analysis and find an unusually large variety of complex dynamics, such as, bistability, torus and chaos, in the presence of predators. We show that, depending on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice of predators deeply influence the interference among predators, thus before applying predators to control disease in prey populations or applying predator control strategy for wildlife management, it is essential to carefully investigate how these predators interact with each other in that specific habitat; otherwise it may lead to ecological disaster.  相似文献   

2.
 Lotka–Volterra equations are considered a dynamical game, where the phenotypes of the predator and of the prey can vary. This differs from the usual procedure of specifying as a priori laws according to which strategies are supposed to change. The question at stake is the survival of each of the species, instead of the maximization of a given pay-off by each player, as it is commonly discussed in games. The predator needs the prey, while the prey can survive without the predator. These obvious and simplistic constraints are enough to shape the regulation of the system: notably, the largest closed set of initial conditions can be delineated, from which there exists at least one evolutionary path where the population can avoid extinction forever. To these so-called viable trajectories, viable strategies are associated, respectively for the prey or for the predator. A coexistence set can then be defined. Within this set and outside the boundary, strategies can vary arbitrarily within given bounds while remaining viable, whereas on the boundary, only specific strategies can guarantee the viability of the system. Thus, the largest set can be determined, outside of which strategies will never be flexible enough to avoid extinction. Received 2 May 1995; received in revised form 15 August 1995  相似文献   

3.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

4.
The increased persistence of predator–prey systems when interactions are distributed through the space has been acknowledged by both empirical and theoretical studies. One salient feature of predator–prey interactions in heterogeneous space, for example, is the existence of cycles with reduced amplitude when compared with a homogeneous landscape. Although the role of spatial interactions in shaping the dynamics of predator–prey systems has been extensively studied, still very few works have focused on the effects of habitat loss and fragmentation on these systems. In this work, we study the population dynamics of a predator–prey system in a single finite habitat with flux at the boundaries. Species movement and growth are described through a reaction–diffusion model with Rosenzweig–MacArthur type local interactions. Conforming with the existing literature, we find that the reduction of habitat size, or increasing of species movement rates equivalently, has the potential to decrease the amplitude of oscillations and even bring the system to a steady coexistence equilibrium above a threshold. We observe, however, situations in which this trend is reversed. This occurs when species movement rates and response at patch boundaries interact to induce non-trivial patterns of species distributions. These distributions are characterized by anti-correlation between predator and prey, creating then spatial refugia for prey. Our results highlight the role of population loss through habitat boundaries in determining the dynamics of predator–prey interactions.  相似文献   

5.
ABSTRACT

We investigate a discrete-time predator–prey system with cooperative hunting in the predators proposed by Chow et al. by determining local stability of the interior steady states analytically in certain parameter regimes. The system can have either zero, one or two interior steady states. We provide criteria for the stability of interior steady states when the system has either one or two interior steady states. Numerical examples are presented to confirm our analytical findings. It is concluded that cooperative hunting of the predators can promote predator persistence but may also drive the predator to a sudden extinction.  相似文献   

6.
7.
8.
Gauss's competitive exclusive principle states that two competing species having analogous environment cannot usually occupy the same space at a time but in order to exploit their common environment in a different manner, they can co-exist only when they are active in different times. On the other hand, several studies on predators in various natural and laboratory situations have shown that competitive coexistence can result from predation in a way by resisting any one prey species from becoming sufficiently abundant to outcompete other species such that the predator makes the coexistence possible. It has also been shown that the use of refuges by a fraction of the prey population exerts a stabilizing effect in the interacting population dynamics. Further, the field surveys in the Sundarban mangrove ecosystem reveal that two detritivorous fishes, viz. Liza parsia and Liza tade (prey population) coexist in nature with the presence of the predator fish population, viz. Lates calcarifer by using refuges.  相似文献   

9.
The influence of a resource subsidy on predator–prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy. Criteria for feasibility and stability of the different equilibrium states are studied both analytically and numerically. At small subsidy input rates, there is a minimum prey carrying capacity needed to support both predator and prey. At intermediate subsidy input rates, the predator and prey can always coexist. At high subsidy input rates, the prey cannot persist even at high carrying capacities. As predator movement increases, the dynamic stability of the predator–prey-subsidy interactions also increases.  相似文献   

10.
We studied a prey–predator system in which both species evolve. We discuss here the conditions that result in coevolution towards a stable equilibrium or towards oscillations. First, we show that a stable equilibrium or population oscillations with small amplitude is likely to occur if the prey''s (host''s) defence is effective when compared with the predator''s (parasite''s) attacking ability at equilibrium, whereas large-amplitude oscillations are likely if the predator''s (parasite''s) attacking ability exceeds the prey''s (host''s) defensive ability. Second, a stable equilibrium is more likely if the prey''s defensive trait evolves faster than the predator''s attack trait, whereas population oscillations are likely if the predator''s trait evolves faster than that of the prey. Third, when the adaptation rates of both species are similar, the amplitude of the fluctuations in their abundances is small when the adaptation rate is either very slow or very fast, but at an intermediate rate of adaptation the fluctuations have a large amplitude. We also show the case in which the prey''s abundance and trait fluctuate greatly, while those of the predator remain almost unchanged. Our results predict that populations and traits in host–parasite systems are more likely than those in prey–predator systems to show large-amplitude oscillations.  相似文献   

11.
The dynamics of a predator–prey system are studied, with a comparison of discrete and continuous strategy spaces. For a \(2 \times 2\) system, the average strategies used in the discrete and continuous case are shown to be the same. It is further shown that the inclusion of constant prey switching in the discrete case can have a stabilising effect and reduce the number of available predator types through extinction.  相似文献   

12.
The scarcity of experimental evidence for the persistence of predator–prey systems at the metapopulation level inspired us to develop a simple predator–prey experiment that could be used for testing several theoretical predictions concerning persistence and its causes. The experimental system used consisted of one or several islands with small bean plants, the phytophagous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In the first experiment, one large system was used consisting of 90 small bean plants, prey and predators. The system persisted for only 120 days. Second, a system was used consisting of eight islands with ten plants each where the islands were connected by bridges. Two replicate experiments showed persistence for at least 393 days. The difference between the first and the second experiments suggests that the longer persistence is caused by a limited migration between the eight islands. Despite efforts to start both replicates of the second experiment with similar initial conditions, the dynamics of both replicates varied substantially. In one replicate the prey and predator numbers showed a trend through time, whereas the numbers fluctuated around a fixed value in the other replicate. A time series analysis of the data of the prey and predators showed the presence of periodicity with a lag of 8.5 weeks in one replicate, whereas such cyclic behaviour was not found in the other replicate. The differences between the two replicates suggest that it is difficult to perform experiments where one replicate is perturbed and the other serves as an undisturbed control. We suggest using a longer time series, where a system is disturbed only during the second half of the experiment. The data from the first and second halves can subsequently be used to estimate the effect of the perturbation. The advantages and disadvantages of this method are discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions.  相似文献   

14.
In this paper, a predator–prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.  相似文献   

15.
A prey–predator discrete-time model with a Holling type I functional response is investigated by incorporating a prey refuge. It is shown that a refuge does not always stabilize prey–predator interactions. A prey refuge in some cases produces even more chaotic, random-like dynamics than without a refuge and prey population outbreaks appear. Stability analysis was performed in order to investigate the local stability of fixed points as well as the several local bifurcations they undergo. Numerical simulations such as parametric basins of attraction, bifurcation diagrams, phase plots and largest Lyapunov exponent diagrams are executed in order to illustrate the complex dynamical behavior of the system.  相似文献   

16.
In this paper a Gause type model of interactions between predator and prey population is considered. We deal with the sufficient condition due to Kuang and Freedman in the generalized form including a kind of weight function. In a previous paper we proved that the existence of such weight function implies the uniqueness of limit cycle. In the present paper we give a new condition equivalent to the existence of a weight function (Theorem 4.4). As a consequence of our result, it is shown that some simple qualitative properties of the trophic function and the prey isocline ensure the uniqueness of limit cycle.  相似文献   

17.
A two-parameter family of discrete models describing a predator–prey interaction is considered, which generalizes a model discussed by Murray, and originally due to Nicholson and Bailey, consisting of two coupled nonlinear difference equations. In contrast to the original case treated by Murray, where the two populations either die out or may display unbounded growth, the general member of this family displays a somewhat wider range of behaviour. In particular, the model has a nontrivial steady state which is stable for a certain range of parameter values, which is explicitly determined, and also undergoes a Neimark–Sacker bifurcation that produces an attracting invariant curve in some areas of the parameter space and a repelling one in others.  相似文献   

18.
Community structure may differ dramatically between clear-water and turbid lakes. These differences have been attributed to differences in the cascading effect of fish on prey populations, owing to the reduced efficiency of fish predation in the presence of macrophytes. However, recent theoretical ideas suggest that water turbidity may shape predator–prey interactions, and it is predicted that prey will relax its antipredation behaviour in turbid water (H1). As a result, the nature of predator–prey interactions is expected to shift from both direct and indirect in clear water to dominantly direct in turbid water (H2). We tested these ideas in a fish–damselfly predator–prey system. In a first behavioural experiment, we looked at antipredation behaviour of damselfly larvae isolated from habitats that differ in turbidity, in the presence of fish in clear and turbid water. As predicted in H1, the larvae were more active in turbid than in clear water. In a complementary enclosure experiment, we reared larvae in a clear-water pond and a turbid pond, respectively, and manipulated the origin of the larvae (clear-water, turbid pond), fish presence (absent, present), and vegetation density (sparse, abundant). In both ponds, fish had a direct negative effect on survival of the larvae, which was mitigated in the presence of vegetation. In the fish treatment, the change in average body mass tended to be higher in the turbid pond than in the clear-water pond, suggesting indirect effects of fish were mitigated in the turbid pond. This was supported by a negative effect of fish on the effective growth rate of larvae in the clear pond, but not in the turbid pond. These results are compatible with the idea that predator–prey relationships are mainly governed by direct effects in turbid water, and by direct and indirect effects in clear water.  相似文献   

19.
Mechanisms and scenarios of pattern formation in predator–prey systems have been a focus of many studies recently as they are thought to mimic the processes of ecological patterning in real-world ecosystems. Considerable work has been done with regards to both Turing and non-Turing patterns where the latter often appears to be chaotic. In particular, spatiotemporal chaos remains a controversial issue as it can have important implications for population dynamics. Most of the results, however, were obtained in terms of ‘traditional’ predator–prey models where the per capita predation rate depends on the prey density only. A relatively new family of ratio-dependent predator–prey models remains less studied and still poorly understood, especially when space is taken into account explicitly, in spite of their apparent ecological relevance. In this paper, we consider spatiotemporal pattern formation in a ratio-dependent predator–prey system. We show that the system can develop patterns both inside and outside of the Turing parameter domain. Contrary to widespread opinion, we show that the interaction between two different type of instability, such as the Turing–Hopf bifurcation, does not necessarily lead to the onset of chaos; on the contrary, the emerging patterns remain stationary and almost regular. Spatiotemporal chaos can only be observed for parameters well inside the Turing–Hopf domain. We then investigate the relative importance of these two instability types on the onset of chaos and show that, in a ratio-dependent predator–prey system, the Hopf bifurcation is indeed essential for the onset of chaos whilst the Turing instability is not.  相似文献   

20.
To understand the effect of the probability of a predator catching prey, Pcatch, on the stability of the predator–prey system, a spatially explicit lattice model consisting of predators, prey, and grass was constructed. The predators and prey randomly move on the lattice space, and the grass grows according to its growth probability. When a predator encounters prey, the predator eats the prey in accordance with the probability Pcatch. When a prey encounters grass, the prey eats the grass. The predator and prey give birth to offspring according to a birth probability after eating prey or grass, respectively. When a predator or prey is initially introduced or newly born, its health state is set at a high given value. This health state decreases by one with every time step. When the state of an animal decreases to less than zero, the individual dies and is removed from the system. Population densities for predator and prey fluctuated significantly according to Pcatch. System stability was characterized by the standard deviation ? of the fluctuation. The simulation results showed that ? for predators increased with an increase of Pcatch; ? for prey reached a maximum at Pcatch = 0.4; and ? for grass fluctuated little regardless of Pcatch. These results were due to the tradeoff between Pcatch and the predator–prey encounter rate, which represents the degree of interaction between predator and prey and the average population density, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号