首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To provide detailed information and insight into the drug-target interaction, structure, solvation, and dynamic and thermodynamic properties, the three known-neuraminidase inhibitors-oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV)-embedded in the catalytic site of neuraminidase (NA) subtype N1 were studied using molecular dynamics simulations. In terms of ligand conformation, there were major differences in the structures of the guanidinium and the bulky groups. The atoms of the guanidinium group of PRV were observed to form many more hydrogen bonds with the surrounded residues and were much less solvated by water molecules, in comparison with the other two inhibitors. Consequently, D151 lying on the 150-loop (residues 147-152) of group-1 neuraminidase (N1, N4, N5, and N8) was considerably shifted to form direct hydrogen bonds with the --OH group of the PRV, which was located rather far from the 150-loop. For the bulky group, direct hydrogen bonds were detected only between the hydrophilic side chain of ZNV and residues R224, E276, and E277 of N1 with rather weak binding, 20-70% occupation. This is not the case for OTV and PRV, in which flexibility and steric effects due to the hydrophobic side chain lead to the rearrangement of the surrounded residues, that is, the negatively charged side chain of E276 was shifted and rotated to form hydrogen bonds with the positively charged moiety of R224. Taking into account all the ligand-enzyme interaction data, the gas phase MM interaction energy of -282.2 kcal/mol as well as the binding free energy (DeltaG(binding)) of -227.4 kcal/mol for the PRV-N1 are significantly lower than those of the other inhibitors. The ordering of DeltaG(binding) of PRV < ZNV < OTV agrees well with the ordering of experimental IC(50) value.  相似文献   

2.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.  相似文献   

3.
Crystallographic studies of neuraminidase-sialic acid complexes indicate that sialic acid is distorted on binding the enzyme. Three arginine residues on the enzyme interact with the carboxylate group of the sugar which is observed to be equatorial to the saccharide ring as a consequence of its distorted geometry. The glycosidic oxygen is positioned within hydrogen-bonding distance of Asp-151, implicating this residue in catalysis.  相似文献   

4.
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium‐bound and calcium‐free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can “clamp” the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure‐based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA‐oseltamivir complex (PDB ID: 3NSS) was used as a wild‐type structure. After selecting the target NA sequences, their three‐dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free‐energy analysis using the MM‐PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM‐PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Analysis of inhibitor binding in influenza virus neuraminidase   总被引:11,自引:0,他引:11       下载免费PDF全文
2,3-didehydro-2-deoxy-N:-acetylneuraminic acid (DANA) is a transition state analog inhibitor of influenza virus neuraminidase (NA). Replacement of the hydroxyl at the C9 position in DANA and 4-amino-DANA with an amine group, with the intention of taking advantage of an increased electrostatic interaction with a conserved acidic group in the active site to improve inhibitor binding, significantly reduces the inhibitor activity of both compounds. The three-dimensional X-ray structure of the complexes of these ligands and NA was obtained to 1.4 A resolution and showed that both ligands bind isosterically to DANA. Analysis of the geometry of the ammonium at the C4 position indicates that Glu119 may be neutral when these ligands bind. A computational analysis of the binding energies indicates that the substitution is successful in increasing the energy of interaction; however, the gains that are made are not sufficient to overcome the energy that is required to desolvate that part of the ligand that comes in contact with the protein.  相似文献   

7.
Owing to its unique function to release the progeny virus particles from the surface of an infected cell, neuraminidase has drawn special attention for developing new drugs to treat influenza viruses. The 150-cavity that is adjacent to the active pocket of the group-1 neuraminidase (N1) renders the conformational change from ‘open’ form to ‘closed’ form when enzyme is binding with a ligand. Consequently, it would be a better strategy to design multi-binding-site inhibitors including X and R groups with proper shapes, sizes and electronic charges fitting into the active site. The NCI and ZINC fragment databases were screened for finding the optimal fragments with de novo design technique. By doing so, 24 derivatives of oseltamivir were obtained by linking the fragments at two different sites of the scaffold of oseltamivir. Molecular docking and dynamics showed that these compounds not only adopt more favourable conformation but also have stronger binding interaction with receptor. Most importantly, all compounds skilfully pass through the cleft (formed by Glu119 and Arg156) and fit into 150-cavity. Therefore, the selected 24 derivatives may become promising candidates for treating influenza virus; in addition, the findings reported here may at least provide useful insights and stimulate new strategy in this area.  相似文献   

8.
In order to clarify the effect of amino acid substitutions on the structure and function of the neuraminidase (NA) protein of influenza A virus, we introduced single-point amino acid substitutions into the NA protein of the A/Tokyo/3/67 (H2N2) strain using PCR-based random mutation. The rate of tolerant random one amino acid substitutions in the NA protein was 47%. Rates of tolerant substitutions for the stalk and for the surface and inner portion of the head region of the NA protein were 79, 54, and 19%, respectively. Deleterious changes, such as those causing the NA protein to stop at the Golgi/endoplasmic reticulum, were scattered throughout the protein. On the other hand, the ratio of mutations with which the NA protein lost neuraminidase activity, but was transported to the cell surface, decreased in proportion to the distance from the structural center of enzyme active site. In order to investigate the effect of accumulated amino acid substitutions on the structural character of the N2NA protein during evolution, the same amino acid substitutions were introduced by site-directed mutagenesis at 23 homologous positions on N2 proteins of A/Tokyo/3/67, A/Bangkok/15/85 (H3N2), and A/Mie/1/2004 (H3N2). The results showed a shift, or discordance, in tolerance at some of the positions. An increase in discordance was correlated with the interval in years between virus strains, and the discordance rate was estimated to be 0.6-0.7% per year.  相似文献   

9.
10.
We have examined amino acids on influenza virus neuraminidase (NA) subtype N9 (A/tern/Australia/G70c/75) which are in contact with monoclonal antibody NC41 to analyze individual interactions important for antibody recognition. The crystal structure of NA complexed with NC41 Fab1 shows antibody contacts at 19 amino acid residues on the NA surface which are localized on five polypeptide loops surrounding the enzyme active site. Fifteen mutant NA genes were constructed to encode a protein which contained a single amino acid substitution and these were tested for effects of the replacement on NC41 binding. Our data revealed that NAs with changes at 368, 400, and 434 completely lost NC41 recognition. NAs with side chains replaced at residues 346 and 373 exhibited binding reduced to less than 50% of wild-type binding. Changes in seven other contacting residues, including substituted side chains which differed considerably from wild-type NA in size and charge, had no significant effect on NC41 binding. These results indicate that only a few of the many residues which make up an epitope are crucial for interaction and provide the critical contacts required for antibody recognition. This implies that antibody escape mutants are selected only if they contain changes at these crucial sites, or changes which introduce bulky side chains that sterically prevent antibody attachment. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The free energies of the face-centred (FCC) and base-centred cubic (BCC) hard-sphere (HS) crystals have been estimated via the free-volume approach. We present two free-volume equations for the FCC and BCC HS crystals, which are different from those predicted by Velasco et al. [Langmuir 14(19) (1998), 5652–5655], and the equations exhibit more accuracy than Velasco et al.'s equations. The limitation of using the free-volume approach was assessed by comparing with true free energies obtained by other well-known methods, and possible improvement and application are discussed.  相似文献   

12.
New Delhi metallo-β-lactamase-1 (NDM-1) as a target for the development of anti-superbug agents, plays an important role in the resistance of β-lactam antibiotics and has received worldwide attention. Sulfhydryl propionic acid derivatives can effectively inhibit the catalytic activity of NDM-1, but the quantitative structure–activity relationship (QSAR) and inhibitor-target recognition mechanism both remain unclear. In this work, CoMFA and CoMSIA models of sulfhydryl propionic acid inhibitors with high predictive ability were obtained, from which the effect of different substituents on the inhibitory activity against NDM-1 were revealed at the molecular level. Then, two 120-nanosecond comparative molecular dynamics (MD) simulations for NDM-1 enzyme and NDM-1-inhibitor complex systems were performed to study the recognition and inhibition mechanism of sulfhydryl propionic acid derivatives. The binding of inhibitors alters the entire H-bond network of the NDM-1 system accompanied by the formation of strong interactions with I35, W93, H120, H122, D124, H189 and H250, further weakens the recognition of NDM-1 by its endogenic substrates. Finally, the results of free energy landscape and conformation cluster analyses show that NDM-1 underwent a significant conformational change after the association with sulfhydryl propionic acid inhibitors. Our findings can provide theoretical support and help for anti-superbug agents design based on the structures of NDM-1 and sulfhydryl propionic acid derivatives.  相似文献   

13.
We report molecular dynamics calculations of neuraminidase in complex with an inhibitor, 4-amino-2-deoxy-2,3-didehydro-N-acetylneuraminic acid (N-DANA), with subsequent free energy analysis of binding by using a combined molecular mechanics/continuum solvent model approach. A dynamical model of the complex containing an ionized Glu119 amino acid residue is found to be consistent with experimental data. Computational analysis indicates a major van der Waals component to the inhibitor-neuraminidase binding free energy. Based on the N-DANA/neuraminidase molecular dynamics trajectory, a perturbation methodology was used to predict the binding affinity of related neuraminidase inhibitors by using a force field/Poisson-Boltzmann potential. This approach, incorporating conformational search/local minimization schemes with distance-dependent dielectric or generalized Born solvent models, correctly identifies the most potent neuraminidase inhibitor. Mutation of the key ligand four-substituent to a hydrogen atom indicates no favorable binding free energy contribution of a hydroxyl group; conversely, cationic substituents form favorable electrostatic interactions with neuraminidase. Prospects for further development of the method as an analysis and rational design tool are discussed.  相似文献   

14.
Abstract

Influenza epidemics and pandemics are caused by influenza A virus. The cell surface protein of hemagglutinin and neuraminidase is responsible for viral infection and release of progeny virus on the host cell membrane. Now 18 hemagglutinin and 11 neuraminidase subtypes are identified. The avian influenza virus of H5N1 is an emergent threat to public health issues. To control the influenza viral infection it is necessary to develop antiviral inhibitors and vaccination. In the present investigation we carried out 50 ns Molecular Dynamics simulation on H5 hemagglutinin of Influenza A virus H5N1 complexed with fluorinated sialic acid by substituting fluorine atoms at any two hydroxyls of sialic acid by considering combinatorial combination. The binding affinity between the protein–ligand complex system is investigated by calculating pair interaction energy and MM-PBSA binding free energy. All the complex structures are stabilized by hydrogen bonding interactions between the H5 protein and the ligand fluorinated sialic acid. It is concluded from all the analyses that the fluorinated complexes enhance the inhibiting potency against H5 hemagglutinin and the order of inhibiting potency is SIA-F9 ? SIA-F2 ≈ SIA-F7 ≈ SIA-F2F4 ≈ SIA-F2F9 ≈ SIA-F7F9 > SIA-F7F8 ≈ SIA-F2F8 ≈ SIA-F8F9 > SIA-F4 ≈ SIA-F4F7 ≈ SIA-F4F8 ≈ SIA-F8 ≈ SIA-F2F7 ≈ SIA > SIA-F4F9. This study suggests that one can design the inhibitor by using the mono fluorinated models SIA-F9, SIA-F2 and SIA-F7 and difluorinated models SIA-F2F4, SIA-F2F9 and SIA-F7F9 to inhibit H5 of H5N1 to avoid Influenza A viral infection.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Neuraminidase (NA) is one of the two major surface antigens of influenza virus. It plays an indispensable role in the release and spread of progeny virus particles during infection. NA inhibitors reduce virus infection in animals. To improve the clinical efficacy of NA inhibitors, we have begun the design of non-carbohydrate inhibitors based on the active site structure of NA. The approach is an iterative process of ligand modeling and electrostatic calculations followed by chemical synthesis of compounds, biological testing, and NA-inhibitor complex structure determination by X-ray crystallography. A strategy has been developed to calculate Ki for newly designed inhibitors. The calculations using the DelPhi program were performed for carbohydrate inhibitors and three preliminary benzoic acid inhibitors of neuraminidase (BANA) that have been synthesized and shown to bind to the active site of NA in the crystal structure. The calculated Kis of these inhibitors have an enlightening agreement with their in vitro biological activities. This demonstrates that the calculations produce informative results on the affinity of modeled inhibitors. GRID maps were also calculated and several pockets were identified for accepting possible new ligands. The calculated Kis for newly designed ligands suggest that these potential compounds will have high inhibitory activities. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The structure-based design of novel H5N1 neuraminidase inhibitors is currently a research topic of vital importance owing to both a recent pandemic threat by the worldwide spread of H5N1 avian influenza and the high resistance of H5N1 virus to the most widely used commercial drug, oseltamivir-OTV (Tamiflu). A specific criterion used in this work for determining fully acceptable conformations of potential inhibitors is a previous experimental proposal of exploiting potential benefits for drug design offered by the ‘150-cavity’ adjacent to the NA active site. Using the crystal structure of H5N1 NA (PDB ID: 2hty) as the starting point, in a set of 54 inhibitors previously proposed by modifying the side chains of oseltamivir, 4 inhibitors were identified using two different computational strategies (ArgusLab4.0.1, FlexX-E3.0.1) both to lower the binding free energy (BFE) of oseltamivir and to have partially acceptable conformations. These 4 oseltamivr structure-based analogues were found to adopt the most promising conformations by identifying the guanidinium side chain of Arg156 as a prospective partner for making polar contacts, but none of the modified 4-amino groups of oseltamivir in the 4 favorable conformations was found to make polar contacts with the guanidinium side chain of Arg156. Hence, the structures of two additional inhibitors were designed and shown to further lower the binding free energy of OTV relative to the previous 54 inhibitors. These two novel structures clearly suggest that it may be possible for a new substituent to be developed by functional modifications at position of the 4-amino group of oseltamivir in order to make polar contacts with the guanidinium side chain of Arg156, and thereby enhance the binding of a more potent inhibitor. Several standpoints of vital importance for designing novel structures of potentially more effective H5N1 NA inhibitors are established.  相似文献   

17.
The c-ros oncogene 1 (ROS1) has proven to be an important cancer target for the treatment of various human cancers. The anaplastic lymphoma kinase inhibitor crizotinib has been granted approval for the treatment of patients with ROS1 positive metastatic non-small-cell lung cancer by the Food and Drug Administration on 2016. However, serious resistance due to the secondary mutation of glycine 2032 to arginine (G2032R) was developed in clinical studies. Loratinib (PF-06463922), a macrocyclic analog of crizotinib, showed significantly improved inhibitory activity against wild–type (WT) ROS1 and ROS1G2032R mutant. To provide insights into the inhibition mechanism, molecular dynamics simulations and free energy calculations were carried out for the complexes of loratinib with WT and G2032R mutated ROS1. The apo-ROS1WT and apo-ROS1G2032R systems showed similar RMSF distributions, while ROS1G2032R-loratinib showed significantly higher than that of WT ROS1-loratinib, which revealed that the binding of loratinib to ROS1G2032R significantly interfered the ?uctuation of protein. Calculations of binding free energies indicate that G2032R mutation significantly reduces the binding affinity of loratinib for ROS1, which arose mostly from the increase of conformation entropy and the decrease of solvation energy. Furthermore, detailed per-residue binding free energies highlighted the increased and decreased contributions of some residues in the G2032R mutated systems. The present study revealed the detailed inhibitory mechanism of loratinib as potent WT and G2032R mutated ROS1 inhibitor, which was expected to provide a basis for rational drug design.  相似文献   

18.
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes.  相似文献   

19.
Martiniano Bello 《Biopolymers》2014,101(10):1010-1018
The bovine dairy protein β‐lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1010–1018, 2014.  相似文献   

20.
Lai YT  Cheng CS  Liu YN  Liu YJ  Lyu PC 《Proteins》2008,72(4):1189-1198
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号