首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the mechanism of ionic detergent‐induced protein denaturation, this study examines the action of sodium dodecyl sulfate on ferrocytochrome c conformation under neutral and strongly alkaline conditions. Equilibrium and stopped‐flow kinetic results consistently suggest that tertiary structure unfolding in the submicellar and chain expansion in the micellar range of SDS concentrations are the two major and discrete events in the perturbation of protein structure. The nature of interaction between the detergent and the protein is predominantly hydrophobic in the submicellar and exclusively hydrophobic at micellar levels of SDS concentration. The observation that SDS also interacts with a highly denatured and negatively charged form of ferrocytochrome c suggests that the interaction is independent of structure, conformation, and ionization state of the protein. The expansion of the protein chain at micellar concentration of SDS is driven by coulombic repulsion between the protein‐bound micelles, and the micelles and anionic amino acid side chains. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 186–199, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
Sodium dodecyl sulfate (SDS) bound to proteins in solution could be estimated by passing through Extracti-Gel that removes free SDS followed by specific interaction of the fluorophore Rhodamine B with protein-bound SDS. The resulting fluorescence intensity is compared with a calibration curve. Whereas globular proteins respond to binding of 1.4 mg SDS/mg protein under native conditions, “kinetically stable” proteins that are otherwise resistant to denaturation due to structural integrity show a low level of SDS binding. Analysis of the circular dichroism spectrum shows that in spite of the low level of SDS binding to kinetically stable proteins under nondenaturing conditions, the detergent generates considerable secondary structure in these proteins. Because the low level of SDS binding is a general feature of kinetically stable proteins, the protocol may fulfill one of the criteria to classify a protein as kinetically stable.  相似文献   

3.
Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise.  相似文献   

4.
5.
The amyloid beta peptide (Abeta) with 39-42 residues is the major component of amyloid plaques found in brains of Alzheimer's disease patients, and soluble oligomeric peptide aggregates mediate toxic effects on neurons. The Abeta aggregation involves a conformational change of the peptide structure to beta-sheet. In the present study, we report on the effect of detergents on the structure transitions of Abeta, to mimic the effects that biomembranes may have. In vitro, monomeric Abeta(1-40) in a dilute aqueous solution is weakly structured. By gradually adding small amounts of sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate to a dilute aqueous solution, Abeta(1-40) is converted to beta-sheet, as observed by CD at 3 degrees C and 20 degrees C. The transition is mainly a two-state process, as revealed by approximately isodichroic points in the titrations. Abeta(1-40) loses almost all NMR signals at dodecyl sulfate concentrations giving rise to the optimal beta-sheet content (approximate detergent/peptide ratio = 20). Under these conditions, thioflavin T fluorescence measurements indicate a maximum of aggregated amyloid-like structures. The loss of NMR signals suggests that these are also involved in intermediate chemical exchange. Transverse relaxation optimized spectroscopy NMR spectra indicate that the C-terminal residues are more dynamic than the others. By further addition of SDS or lithium dodecyl sulfate reaching concentrations close to the critical micellar concentration, CD, NMR and FTIR spectra show that the peptide rearranges to form a micelle-bound structure with alpha-helical segments, similar to the secondary structures formed when a high concentration of detergent is added directly to the peptide solution.  相似文献   

6.
Sodium dodecyl sulfate (SDS) is a highly effective and widely used protein denaturant. We show that certain amphipathic cosolvents such as 2-methyl-2,4-pentanediol (MPD) can protect proteins from SDS denaturation, and in several cases can refold proteins from the SDS-denatured state. This cosolvent effect is observed with integral membrane proteins and soluble proteins from either the α-helical or the β-sheet structural classes. The SDS/MPD system can be used to study processes involving native protein states, and we demonstrate the reversible thermal denaturation of the outer membrane protein PagP in an SDS/MPD buffer. MPD and related cosolvents can modulate the denaturing properties of SDS, and we describe a simple and effective method to recover refolded, active protein from the SDS-denatured state.  相似文献   

7.
Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well characterized in vitro, with both pathogenic and non-pathogenic length ataxin-3 undergoing fibrillogenesis. However, only ataxin-3 containing an expanded polyQ tract leads to SCA3. Therefore other cellular factors, not present in previous in vitro studies, may modulate aggregation during disease. The interactions between fibrillar species and cell membranes have been characterized in a number of amyloid diseases, including Huntington’s Disease, and these interactions affect aggregation and toxicity. We have characterized the effects of the membrane mimetic sodium dodecyl sulfate (SDS) on ataxin-3 structure and aggregation, to show that both micellar and non-micellar SDS have differing effects on the two stages of ataxin-3 aggregation. We also demonstrate that fibrillar ataxin-3 binds phospholipids, in particular phosphorylated phosphotidylinositols. These results highlight the effect of intracellular factors on the ataxin-3 misfolding landscape and their implications in SCA3 and polyQ diseases in general are discussed.  相似文献   

8.
Xu Q  Keiderling TA 《Proteins》2006,63(3):571-580
Interactions of sodium dodecyl sulfate (SDS) at submicellar and micellar concentration, with the globular protein, horse heart cytochrome c, at low pH have been shown to stabilize two molten globule-like intermediates. These dynamic studies were performed using far-UV, near-UV, and Soret-band circular dichroism (CD) as well as fluorescence methods. Stopped-flow CD and fluorescence studies of acid-denatured cytochrome c refolding with SDS were performed at both submicellar and micellar concentrations. Distinctive refolding mechanisms (from analysis of both CD and fluorescence) were found under these two conditions, and an obvious refolding intermediate was evident in the fluorescence traces. In addition, stopped-flow CD in the Soret region showed multistep kinetics, suggesting that the spectral changes in this region are not only solvent effect related but also connected with the change of secondary structure. A possible folding mechanism is proposed to rationalize the kinetics results.  相似文献   

9.
Conformational changes of bovine α-lactalbumin in sodium dodecyl sulfate (SDS) solution were studied with the circular dichroism (CD) method using a dilute phosphate buffer ofpH 7.0 and ionic strength 0.014. The proportions of α-helix and β-structure in α-lactalbumin were 34% and 12%, respectively, in the absence of SDS. In the SDS solution, the helicity increased to 44%, while the β-structure disappeared. In order to verify the structural change from β-structure to α-helix, the moiety, assuming the β-structure in the α-lactalbumin, was isolated by a chymotryptic digestion. The structure of this α-lactalbumin fragment, Phe31-Ile59, was almost disordered. However, the fragment adopted a considerable amount of α-helical structure in the SDS solution. On the other hand, the tertiary structure of α-lactalbumin, detected by changes of CD in the near-ultraviolet region, began to be disrupted before the secondary structural change in the surfactant solution. Dodecyl sulfate ions of 80 mol were cooperatively bound to α-lactalbumin. Although the removal of the bound dodecyl sulfate ions was tried by the dialysis against the phosphate buffer for 5 days, 4 mol dodecyl sulfates remained per mole of the protein. The remaining amount agreed with the number of stoichiometric binding site, determined by the Scatchard plot, indicating that the stoichiometric binding was so tight.  相似文献   

10.
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57?×?104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.  相似文献   

11.
The conformational transitions of ovalbumin, bacterial α-amylase, papain, and β-lactoglobulin were studied in the absence and presence of sodium dodecyl sulfate (SDS) between pH 2.75 and 12.0 by means of circular dichroism (CD) measurement. The weight ratios of SDS to protein in solutions were 14:1 in all experiments. The CD bands in the near-ultraviolet spectral region were strongly reduced by SDS, whereas those in the far-ultraviolet were enhanced. With the exception of the amylase, the mean residue ellipticities of the proteins at 222 nm were increased by SDS, especially in acidic solutions. At a pH of about 3.0, the [θ]222 values approached ?17 (±2) · 103 deg · cm2 · dmol?1. It is assumed that at a sufficiently low pH value the proteins which are complexed with SDS have a similar backbone conformation of moderate helical content. In alkaline solutions, the detergent effect was largely reduced due to electrostatic repulsion between the negatively charged protein and dodecyl ions. The near-ultraviolet spectra of ovalbumin, papain, and β-lactoglobulin at pH 6.4 were analyzed. Assignment of the resolved bands to the appropriate chromophores was also attempted.  相似文献   

12.
Identification of ambiguous encoding in protein secondary structure is paramount to develop an understanding of key protein segments underlying amyloid diseases. We investigate two types of structurally ambivalent peptides, which were hypothesized in the literature as indicators of amyloidogenic proteins: discordant α-helices and chameleon sequences. Chameleon sequences are peptides discovered experimentally in different secondary-structure types. Discordant α-helices are α-helical stretches with strong β-strand propensity or prediction. To assess the distribution of these features in known protein structures, and their potential role in amyloidogenesis, we analyzed the occurrence of discordant α-helices and chameleon sequences in nonredundant sets of protein domains (n = 4263) and amyloidogenic proteins extracted from the literature (n = 77). Discordant α-helices were identified if discordance was observed between known secondary structures and secondary-structure predictions from the GOR-IV and PSIPRED algorithms. Chameleon sequences were extracted by searching for identical sequence words in α-helices and β-strands. We defined frustrated chameleons and very frustrated chameleons based on varying degrees of total β propensity ≥α propensity. To our knowledge, this is the first study to discern statistical relationships between discordance, chameleons, and amyloidogenicity. We observed varying enrichment levels for some categories of discordant and chameleon sequences in amyloidogenic sequences. Chameleon sequences are also significantly enriched in proteins that have discordant helices, indicating a clear link between both phenomena. We identified the first set of discordant-chameleonic protein segments we predict may be involved in amyloidosis. We present a detailed analysis of discordant and chameleons segments in the family of one of the amyloidogenic proteins, the Prion Protein.  相似文献   

13.
The distribution of indole and tryptophan derivatives between sodium dodecyl sulfate (SDS) micellar and aqueous phases was analyzed using conventional methods of ultraviolet (UV) absorption spectroscopy and measurement of fluorescence quenching by succinimide. On the assumption of a simple pseudo-phase equilibrium between both phases the distribution coefficient was easily obtained by the measurement of the ratioR pv of the absorbance intensity in the peak to that in the valley of the UV spectra or the fluorescence quenching constant Ksv. The possibilities and limitations of utilizing the ratio of the collisional quenching constant estimating from theK sv value in the micellar phase to that in the aqueous phase for a measure of the polarity of the microenvironment around the tryptophan derivatives in the SDS micelle is discussed in comparison with theR pv values for the UV spectra. The indole ring in the derivatives in the SDS micelle is localized near or on the micelle-water interface with its imino group directed toward the aqueous phase. Thus it can serve as a feasible model for interpreting the distribution coefficients andR pv values obtained for the various indole and tryptophan derivatives.Abbreviations UV ultraviolet - SDS sodium dodecyl sulfate - ATEE N-acetyl-l-tryptophan ethyl ester - ATA N-acetyl-l-tryptophan-amide - CMC critical micelle concentration  相似文献   

14.
The interactions of hemoglobin (Hb) with sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (DTAB) are investigated by several methods. We observed the formation of hemichrome below the critical micelle concentration (cmc) of surfactant and the release of heme from Hb above the cmc. When pH value of Hb/surfactant system is lower than isoelectric point (pI) of Hb, the interaction of SDS with Hb is both electrostatic and hydrophobic, while the interaction of DTAB with Hb is hydrophobic mainly. On the contrary, when pH > pI, the interaction of SDS with Hb is hydrophobic mainly, while the interaction of DTAB with Hb is both electrostatic and hydrophobic. In the case where both the electrostatic interaction and hydrophobic interaction exist, the electrostatic interaction plays a more important role. Thus, SDS tends to interact with Hb more obviously than DTAB does when pH < pI and the interaction between DTAB and Hb is stronger when pH > pI.  相似文献   

15.
Although the formation of an alpha-helix or partial unfolding of proteins has been suggested to be important for amyloid fibrils to form in alcohols, the exact mechanism involved remains elusive. To obtain further insight into the development of amyloid fibrils, we used a 22-residue peptide, K3, corresponding to Ser20 to Lys41 of intact beta2-microglobulin. Although K3 formed an alpha-helix at high concentrations of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in 10 mM HCl (pH approximately 2), the helical content was not high, indicating a low preference to do so. The partly alpha-helical conformation was converted with time into a highly ordered beta-sheet with a fibrillar morphology as revealed by atomic force microscopy. Importantly, the TFE and HFIP-induced fibrillation exhibited a concentration dependence with a maximum at approximately 20 and approximately 10% (v/v), respectively, slightly below the concentrations at which these alcohols form dynamic clusters. Focusing on the similarity of the effects of alcohol on proteins with those of sodium dodecyl sulfate (SDS), we examined the effects of SDS on K3. SDS also induced fibrils to form with a maximum at approximately 4 mM, slightly below the critical micelle concentration. These results indicate that, with an increase in the concentration of hydrophobic cosolvent (TFE, HFIP, or SDS), a delicate balance of decreasing hydrophobic interactions and increasing polar interactions (i.e. H-bonds) in and between peptides leads to the formation of ordered fibrils with a bell-shaped concentration dependence.  相似文献   

16.
This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.  相似文献   

17.
The amyloid β‐peptide fragment comprising residues 25–35 (Aβ25‐35) is known to be the most toxic fragment of the full length Aβ peptide which undergoes fibrillation very rapidly. In the present work, we have investigated the effects of the micellar environment (cationic, anionic, and nonionic) on preformed Aβ25‐35 fibrils. The amyloid fibrils have been prepared and characterized by several biophysical and microscopic techniques. Effects of cationic dodecyl trimethyl ammonium bromide (DTAB), cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS), and nonionic polyoxyethyleneoctyl phenyl ether (Triton X‐100 or TX) on fibrils have been studied by Thioflavin T fluorescence, UV–vis spectroscopy based turbidity assay and microscopic analyses. Interestingly, DTAB and SDS micelles were observed to disintegrate prepared fibrils to some extent irrespective of their charges. CTAB micelles were found to break down the fibrillar assembly to a greater extent. On the other hand, the nonionic surfactant TX was found to trigger the fibrillation process. The presence of a longer hydrophobic tail in case of CTAB is assumed to be a reason for its higher fibril disaggregating efficacy, the premise of their formation being largely attributed to hydrophobic interactions. Proteins 2016; 84:1213–1223. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Amyloid consists of β-sheet polymers and is associated with disease and with functional assemblies. Amyloid-forming proteins differ widely in native structures and sequences. We describe here how conformational preferences of non-polar amino acid residues can affect amyloid formation. The most non-polar residues promote either β-strands (Val, Ile, Phe, and Cys, VIFC) or α-helices (Leu, Ala, and Met, LAM), while the most polar residues promote only α-helices. For 12 proteins associated with disease, the localizations of the amyloid core regions are known. Eleven of these contain segments that are biased for VIFC, but essentially lack segments that are biased for LAM. For the amyloid β-peptide associated with Alzheimer’s disease and an amyloidogenic fragment of the prion protein, observed effects of mutations support that VIFC bias favors formation of β-sheet aggregates and amyloid, while LAM bias prevents it. VIFC and LAM profiles combine information on secondary structure propensities and polarity, and add a simple criterion to the prediction of amyloidogenic regions.  相似文献   

19.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

20.
The conformation of two fragments of rabbit uteroglobin is described. The peptides are PRFAHVIENLL and PQTTRENIMKLTEKIVK, corresponding to helices I and IV in the crystal structure. CD shows that both peptides interact with sodium dodecyl sulfate (SDS) micelles and change their conformation to an α-helix. The helical content estimated from the CD band at 222 nm is about 40% in each peptide. Surface tension measurements show that both peptides lower the critical micellar concentration (cmc) of SDS, with a more dramatic effect in the case of helix I. This peptide by itself acts as a surfactant, and is able to interact with SDS even below the observed cmc, forming β aggregates. Proton magnetic resonance (1H-nmr) suggests that flexible helices are present. The longest helical stretches compatible with 1H-nmr data extend from Phe6 to Leu14 for helix I and from Arg53 to Ile63 for helix IV. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号