共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了陆生植物地上、地下各组织中生物量分配对氮沉降的响应,为研究大气氮沉降背景下陆地生态系统的碳、氮循环过程及植物生物量分配、立木收获、定向培育等相关研究和实践提供参考依据。共收集整理了国内外63篇论文的原始数据资料进行Meta分析(Meta-analysis),用以定量评估氮沉降对植物生物量分配的影响,并通过亚组分析进一步探讨了不同生态系统类型、植物种类、氮肥形式、施氮水平和持续时间对生物量分配的影响。结果表明,总体来看施氮会显著促进植物地上部分生物量分配,植物叶生物量和茎生物量在施氮条件下均显著增加;然而地下生物量所受促进作用要低于地上部分,表现为植物细根生物量和粗根生物量在氮输入下并没有显著变化;植物根冠比在氮沉降下显著降低;叶重比、茎重比和根重比在氮沉降下没有显著变化。此外,亚组分析结果表明生态系统类型和植物类型会显著影响植物总生物量和根冠比对氮沉降的响应,草本植物在氮沉降下的生物量累积明显优于木本,这说明短期氮沉降可能会增加草本的覆盖面积;施肥形式对根冠比的影响存在明显差异,相比于尿素,硝酸铵对植物根冠比的作用更显著;不同施氮水平显著影响地上生物量分配,中氮水平(本研究为60—120 kg hm-2a-1)促进作用最大,高氮水平(本研究为≥120 kg hm-2a-1)促进作用明显减弱,这与总生物量的变化一致,表明过高的氮沉降量将抑制植物生长;氮沉降处理时间长短对植物地上生物量的影响也存在显著差异,当施氮时间高于3年,氮沉降对地上生物量的促进作用几乎消失。总之,短期氮沉降会使植物分配更多生物量给地上部分,且氮沉降对草本植物生物量的累积作用明显优于木本,这些发现可为未来大气氮沉降背景下植物地上、地下部分碳存储、植物群落结构、植被动态等相关研究提供科学依据。 相似文献
2.
羊草种群生物量分配动态模拟 总被引:3,自引:0,他引:3
基于4种密度羊草种群的温室模拟试验,分析了羊草种群地上生物量与地下生物量的动态变化.结果表明:羊草种群的地上生物量与地下生物量随生长期呈增加的趋势,且随密度的增加而增加,但不同密度间羊草地上生物量与地下生物量的相对生长速率没有显著差异;不同密度羊草种群的根冠比随生长进程而增加,但差异不显著,表明环境因子是影响羊草种群根冠比变化的主导因素;单株羊草及羊草种群的地上生物量和地下生物量间存在显著的幂函数关系,但幂函数指数与系数随羊草密度的变化而变化,表明资源竞争引起的微环境差异导致了羊草种群根冠比的动态变化,可为定量研究光合产物分配提供参考. 相似文献
3.
Deciduous trees recycle nitrogen within their tissues. The aim of this study was to test the hypothesis that reductions in plant growth, caused by competition and herbivory, reduce the sink strength for N during autumn nutrient withdrawal, and reduce the storage capacity and hence the amount of N remobilized in the following spring. We used (15)N-labelled fertilizer to quantify N uptake, leaf N withdrawal and remobilization. Betula pubescens saplings were grown with either Molinia caerulea or Calluna vulgaris, and subjected to simulated browsing damage. Competition reduced B. pubescens leaf N withdrawal and remobilization, with C. vulgaris having a greater effect than M. caerulea. However, simulated browsing had no significant effect on sapling N dynamics. The patterns of leaf N withdrawal and remobilization closely followed sapling dry mass. We conclude that the effect of competition on sapling mass reduces their N-storage capacity. This reduces sink strength for leaf N withdrawal and the source strength for remobilized N. The ability of saplings to compensate for browsing damage removed any potential effect of browsing on N dynamics. 相似文献
4.
Burial is one of the major factors influencing plant ecology in deserts and coastal areas. Consequently, many studies have measured the responses of dune plants to sand burial. However, there remains little agreement about the mechanisms and characteristics constituting the burial response of plants. In particular, stimulation of growth has been reported as the most common plant burial response; however, stimulation has not been reported consistently among studies. Here, a literature survey showed that the depth of burial relative to the height of the plant determined whether the growth of a species was stimulated by burial. Growth stimulation was limited to shallow burial depths, while burial depths greater than the height of the plant consistently resulted in reduced growth. As studies used widely differing burial depths or units of growth measurement, the variation in reported stimulation of plant growth can be partly attributed to differences in experimental procedure. The stimulation of growth in many species was accompanied by an increase in photosynthesis over a limited period and by a shift in biomass allocation from root to shoot. Most plants demonstrated stimulated growth (up to 200%) in response to shallow burial indicating that some burial response mechanisms are general to many species. However, a few specialist dune species displayed a much greater ability to respond to burial (up to 700% stimulation of plant mass). Although allocation shifts and increased photosynthesis have been shown to be associated with dune plant burial response, there remains a need for field measurements that focus on the diversity of mechanisms underlying plant response to burial. 相似文献
5.
以红皮和白皮菊芋为研究材料,通过设置不同的灌水梯度,研究了干旱胁迫对菊芋各器官生物量及物质分配规律的影响。试验结果表明,干旱胁迫降低了红皮和白皮菊芋各器官的生物量;其中,50%灌水条件下两种菊芋的总生物量、地上生物量和地下生物量显著高于10%、20%、30%和40%;红皮菊芋根冠比随着灌水量的减少呈现逐渐增加的变化趋势,白皮菊芋呈现\"升-降-升\"的变化趋势,且在相同水分处理条件下红皮菊芋茎叶比和根冠比均高于白皮;红皮菊芋随着灌水量的降低根系贡献率呈现逐渐增加的变化趋势,叶片贡献率、块茎贡献率、花贡献率、叶柄贡献率、茎秆贡献率均呈现逐渐降低的变化趋势,白皮菊芋块茎贡献率、花贡献率随灌水量的降低呈现逐渐降低的变化趋势,其他各器官的贡献率随灌水量降低没有规律可循。 相似文献
6.
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (⩾5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots. 相似文献
7.
《植物生态学报》2017,41(1):43
Aims As an important potential carbon sink, shrubland ecosystem plays a vital role in global carbon balance and climate regulation. Our objectives were to derive appropriate regression models for shrub biomass estimation, and to reveal the biomass allocation pattern and carbon density in Rhododendron simsii shrubland.
Methods We conducted investigations in 27 plots, and developed biomass regression models for shrub species to estimate shrub biomass. The biomass of herb and litterfall were obtained through harvesting. Plant samples were collected from each plot to measure carbon content in different organs.
Important findings The results showed that the power and linear models were the most appropriate equation forms. The D and D2H (where D was the basal diameter (cm) and H was the shrub height (m)) were good predictors for organ biomass and total biomass of shrubs. All of the biomass models reached extremely significant level, and could be used to estimate shrub biomass with high accuracy. It was more difficult to predict leaf and annual branch biomass than stem biomass, because leaf and annual branch were susceptible to herbivores and inter-plant competition. The mean biomass of the shrub layer was 20.78 Mg·hm-2, in which Rhododendron simsii and Symplocos paniculata biomass accounted for 93.63%. Influenced by both environment and species characteristics, the biomass of the shrub layer organs was in the order of stem > root > leaf > annual branch. The root:shoot ratio of the shrub layer was 0.32, which was less than other shrubs in subtropical regions. The relative higher aboveground biomass allocation reflected the adaptation of plants to the warm and humid environment for more photosynthesis. The mean total community biomass was 26.26 Mg·hm-2, in which shrub layer, herb layer and litter layer accounted for 79.14%, 7.62% and 13.25%, respectively. Litter biomass was relatively high, which suggested that this community had high nutrient return. There were significant correlations among aboveground biomass, belowground biomass and total biomass of shrub layer and herb layer. The mean biomass carbon density of the community was 11.70 Mg·hm-2 and the carbon content ratio was 44.55%. The carbon density was usually obtained using the conversion coefficient of 0.5 in previous studies, which could overestimate carbon density by 12.22%. 相似文献
Methods We conducted investigations in 27 plots, and developed biomass regression models for shrub species to estimate shrub biomass. The biomass of herb and litterfall were obtained through harvesting. Plant samples were collected from each plot to measure carbon content in different organs.
Important findings The results showed that the power and linear models were the most appropriate equation forms. The D and D2H (where D was the basal diameter (cm) and H was the shrub height (m)) were good predictors for organ biomass and total biomass of shrubs. All of the biomass models reached extremely significant level, and could be used to estimate shrub biomass with high accuracy. It was more difficult to predict leaf and annual branch biomass than stem biomass, because leaf and annual branch were susceptible to herbivores and inter-plant competition. The mean biomass of the shrub layer was 20.78 Mg·hm-2, in which Rhododendron simsii and Symplocos paniculata biomass accounted for 93.63%. Influenced by both environment and species characteristics, the biomass of the shrub layer organs was in the order of stem > root > leaf > annual branch. The root:shoot ratio of the shrub layer was 0.32, which was less than other shrubs in subtropical regions. The relative higher aboveground biomass allocation reflected the adaptation of plants to the warm and humid environment for more photosynthesis. The mean total community biomass was 26.26 Mg·hm-2, in which shrub layer, herb layer and litter layer accounted for 79.14%, 7.62% and 13.25%, respectively. Litter biomass was relatively high, which suggested that this community had high nutrient return. There were significant correlations among aboveground biomass, belowground biomass and total biomass of shrub layer and herb layer. The mean biomass carbon density of the community was 11.70 Mg·hm-2 and the carbon content ratio was 44.55%. The carbon density was usually obtained using the conversion coefficient of 0.5 in previous studies, which could overestimate carbon density by 12.22%. 相似文献
8.
植物生物量分配特征的变化反映了不同环境条件下植物的适应策略,全球气候变暖正在改变青藏高原高寒生态系统植被动态和生物量分配格局。然而,到目前为止,有关青藏高原高寒灌丛生物量分配特征对气候变暖的响应研究较少。为了探究气候变暖对高寒灌丛生物量分配的影响,以青藏高原东部典型的窄叶鲜卑花高寒灌丛为研究对象,分析了高寒灌丛灌木层、草本层和群落水平生物量分配特征对开顶式生长室(OTC)模拟增温的响应。研究结果表明:整个生长季节,模拟增温使空气温度和表层土壤温度分别升高0.6℃和1.2℃,使表层土壤水分含量下降2.7%。模拟增温使草本层和群落地上生物量显著增加57.8%和7.2%,使灌木层、草本层和群落根系生物量显著增加42.5%、105.6%和45.6%。然而,模拟增温没有显著影响灌木层地上生物量。同时,模拟增温使灌木层、草本层和群落总生物量显著增加25.6%、85.7%和28.4%,使灌木层、草本层和群落根冠比显著增加33.2%、30.4%和36.0%。由此可见,模拟增温在促进高寒灌丛生物量生产的同时将显著提高向地下根系部分的分配比例。Pearson相关分析表明,高寒灌丛生物量分配与空气温度、土壤温度和土壤硝态氮含量呈显著正相关关系;多元线性回归分析结果也表明,空气温度、土壤温度和土壤硝态氮含量解释了高寒灌丛生物量分配变异的50.8%以上。这些结果表明,青藏高原东部高寒灌丛植被能够通过调节生物量分配模式应对未来气候变暖。 相似文献
9.
米心水青冈幼苗对光照和养分的响应 总被引:3,自引:0,他引:3
在模拟郁闭林下(L1,大约1%~2%的全日照)、林窗(L2,大约18%的全日照)、开阔地(L3,全日照)3个光照水平和每个光照水平下进行施肥(F1)和不施肥(F0)对照的6个实验处理条件下,研究了2年龄米心水青冈(FagusenglerianaSeem)幼苗在随后的两个生长季里的生长对光照和土壤养分的响应。结果显示:光照和养分对幼苗高度、基径和生物量有显著的影响。经过两个生长季,L1处理下幼苗高度增量极显著地小于L2和L3处理下幼苗高度增量。L1处理下基径和生物量的增量在处理当年秋就极显著地小于L2和L3处理下的增量,并在第二年差异继续扩大。L2和L3处理下的幼苗间的生长没有显著差异。施肥明显地促进了L2和L3处理下的幼苗的生长,但对L1处理下的幼苗没有明显的作用。这些结果说明,虽然2年龄米心水青冈幼苗能够在林下的弱光条件下生存,但生长受到了极大的抑制。幼苗在林窗的中等光照条件下能够与在开阔地全日照条件下生长的一样好或更好,这与许多耐阴的落叶树的响应一样。在比林内光照强度较高的条件下施肥或较高的土壤养分才对米心水青冈幼苗的生长和生存起作用。 相似文献
10.
Effects of Elevated Temperature on Growth and Gas Exchange in Dominant Plant Species from Maowusu Sandland,China 总被引:2,自引:1,他引:2
We compared the effect of elevated temperature on morphological development, biomass accumulation and allocation, and gas exchange of three dominant plants (Caragana intermedia Kuanget H.C. Fu, Hedysarum mongolicum Turcz., and Artemisia ordosica Krasch.) growing in Chinese Maowusu sandland. Plants were grown in two temperature chambers (25/20, 28/23 °C, day/night) during 60 d. Tree height, number of leaves, and leaf area were increased in C. intermedia and H. mongolicum seedlings, while in A. ordosica temperature only affected tree height. Elevated temperature increased biomass and reduced the root : shoot ratio in C. intermedia and H. mongolicum seedlings, but not in A. ordosica seedlings. The net photosynthetic rate (P
N) and transpiration rate (E) were increased at days 40 and 60 in C. intermedia and H. mongolicum seedlings, while in A. ordosica seedlings no significant effects on E were observed, and P
N was increased only at day 60. Water use efficiency (WUE) was reduced at days 40 and 60 in H. mongolicum seedlings, and at day 60 in C. intermedia seedlings. No temperature effect on WUE was observed in A. ordosica seedlings. These different responses indicate that climate change could alter plant communities in Maowusu sandland. 相似文献
11.
郭柯 《植物学报(英文版)》2004,46(5)
在模拟郁闭林下(L1,大约1%~2%的全日照)、林窗(L2,大约18%的全日照)、开阔地(L3,全日照)3个光照水平和每个光照水平下进行施肥(F1)和不施肥(F0)对照的6个实验处理条件下,研究了 2年龄米心水青冈(Fagus engleriana Seem)幼苗在随后的两个生长季里的生长对光照和土壤养分的响应.结果显示:光照和养分对幼苗高度、基径和生物量有显著的影响.经过两个生长季,L1处理下幼苗高度增量极显著地小于L2和L3处理下幼苗高度增量.L1处理下基径和生物量的增量在处理当年秋就极显著地小于L2和L3处理下的增量,并在第二年差异继续扩大.L2和L3处理下的幼苗间的生长没有显著差异.施肥明显地促进了L2和L3处理下的幼苗的生长,但对L1处理下的幼苗没有明显的作用.这些结果说明,虽然2年龄米心水青冈幼苗能够在林下的弱光条件下生存,但生长受到了极大的抑制.幼苗在林窗的中等光照条件下能够与在开阔地全日照条件下生长的一样好或更好,这与许多耐阴的落叶树的响应一样.在比林内光照强度较高的条件下施肥或较高的土壤养分才对米心水青冈幼苗的生长和生存起作用. 相似文献
12.
该研究利用4个由高到低不同海拔的同质园实验,以青藏高原高寒草地优势植物垂穗披碱草(Elymus nutans)、矮嵩草(Kobresia humilis)和珠芽蓼(Polygonum viviparum)为对象,分析了植物个体根、茎、叶生物量分配及根冠比的变化规律及影响因素。结果表明:(1)植物个体根、茎、叶质量比和根冠比具有显著的种间差异;与垂穗披碱草和珠芽蓼相比,矮嵩草具有显著较高的根质量比而叶、茎质量比较低,所以其根冠比较高。(2)在向低海拔移栽的过程中,珠芽蓼叶质量比保持不变,茎质量比显著降低而根质量比显著升高,根冠比表现出显著上升的趋势;垂穗披碱草则相反,即叶、茎质量比显著升高而根质量比显著降低,根冠比表现出显著下降的趋势;矮嵩草根、茎、叶质量比和根冠比则无显著变化。(3)随着海拔降低,年均气温明显升高而年均降雨量明显降低,且在植物个体种源地和土壤基质保持一致的条件下,向低海拔移栽过程中温度是导致珠芽蓼根、茎、叶生物量分配及根冠比变化的重要因素,而水分是垂穗披碱草根、茎、叶生物量分配及根冠比变化的重要驱动因素;矮嵩草根、茎、叶生物量分配及根冠比受其遗传因素影响较大。因此,在将来暖干化的背景下,青藏高原高寒草地植物生物量的分配将会发生改变,导致它们对资源(光照、水分和土壤养分)获取和利用的变化而改变它们的种间关系,从而影响群落的物种多样性与组成,最终可能导致生态系统功能的变化。 相似文献
13.
早夏草本植物作为阔叶红松林林下的一类优势物种,对整个生长季林下草本物种多样性和生物量具有重要影响,对其不同生长阶段生物量分配特征及生物量模型的研究有助于了解该类植物生存策略和碳汇储量。以吉林省蛟河地区阔叶红松林林下的白花碎米荠(Cardamine leucantha)、北重楼(Paris verticillata)、鹿药(Smilacina japonica)、美汉草(Meehania fargesii)、山茄子(Anisodus acutangulus)和紫花变豆菜(Sanicula rubriflora)6种早夏草本植物为研究对象,从4月初到8月底对其物候期进行观察记录,定期取样,从而对6种植物不同生长时期各组分生物量分配特征,地上与地下生物量相对生长关系进行分析研究,并以株高级为自变量建立5种形式(一元线性模型、一元二次模型、指数模型、幂函数模型、对数模型)的单种和混种生物量模型,选取最优模型进行验证。结果表明,6种早夏草本植物花期一般开始于4月底结束于6月中旬,果期开始于5月底结束于8月中旬,不同植物的花、果期持续时间差异较大。生长期内,随着植物生长,株高、生物量和根冠比(R/S)变化明显,但变化趋势不一致。不同物种各组分生物量分配存在差异,用于繁殖的生物量分配比例较小,通常不超过5%。所有物种AGB和BGB间均具有明显的相对生长关系(P0.0001),且均表现为异速生长(相关生长指数a≠1)。根据R~2和SEE选取最优生物量模型,其中幂函数模型形式最常用,其次是一元二次和指数模型。所有最优模型的R~2均较高且SEE较低,拟合效果较好,其中AGB和TB的最优模型要优于BGB,单种模型优于混种模型;通过验证,除混合模型BGB的RMA(30.679%)稍大于30%外,所有模型的RS、EE和RMA均小于30%,P值均大于80%,说明所建立的最优模型能够用来对该地区阔叶红松林林下早夏草本植物生物量进行估算。 相似文献
14.
以北京市典型绿化树种油松、白蜡和元宝枫为实验对象,设置不透水地表、透水地表和对照(自然地表)3种地表类型和低(株行距为2.0 m×2.0 m)、中(1.0 m×1.0 m)、高(0.5 m×0.5 m)3个种植密度,经过6年的生长,对树木的生长和生物量进行了测定。结果表明:相比于对照,不透水地表下油松、白蜡和元宝枫的树高生长受到抑制,白蜡和元宝枫的单株生物量分别降低2.1%—27.1%和33.6%—52.3%,根冠比分别增加3.4%—25.8%和15.7%—23.4%。相比于不透水地表,透水地表下白蜡和元宝枫的树高显著增加,白蜡的单株生物量增加5.3%—45.5%,根冠比下降11.4%—18.7%。随着密度的增加,3种树木的基径和单株生物量显著降低,但中低密度下的单位面积生物量无显著性差异。此外,硬化地表与种植密度对树木的基径、树高、单株生物量和根冠比均无显著的交互作用。因此,在城市绿化中,采用透水地表来替代不透水地表,有利于改善树木生境进而促进树木生长。白蜡相比元宝枫更能适应硬化地表的不利影响,是更好的城市绿化树种的选择。同时,合理的种植密度是保证城市树木生长的重要因素。 相似文献
15.
A whole-plant model of C and N metabolism is presented for the juvenile stage. It is aimed at comparing the growth performance
of (wild) plant species in a range of environments with respect to irradiance and availability of nitrate (NO3
-) and ammonium (NH4
+). State variables are the structural masses of leaves, stem and root, NO3
- concentrations in root and shoot, non-structural carbohydrate (C) densities in leaves, stem and root and non-structural organic
N concentration in the whole plant. Explicit expressions for NO3
- influx, efflux, translocation and assimilation, and for NH4
+ uptake and assimilation have been formulated in an accompanying paper. Photosynthetic rate is derived from electron-transport
rate which depends on irradiance and chlorophyll concentration on a leaf-area basis. The latter is proportional to non-structural
organic N concentration. Photosynthetic N is considered non-structural. Unique features of the model are the use of metabolite
signals and the treatment of C allocation and balanced growth. Metabolite signals are dimensionless functions of non-structural
compounds (NO3
-, C, organic N) and modify rate variables involved in N uptake and assimilation, C allocation and growth. Carbon allocation
is driven by concentration differences of the cytosolic C pools in stem and root and is modified by the N status of the plant
such that a high N status increases the apparent size of the shoot. Photosynthate is unloaded into C buffers which degrade
at a constant specific rate. The sugar fluxes which arise from these buffers drive the growth rate of stem and root. No parameters
are included for maximum specific growth or for activity or strength of sinks. Primary stem growth is proportional to growth
of the leaf compartment: leaves arise from stems in a modular fashion. Leaves are autonomous with respect to their C balance.
The model is presented as a system of differential equations which is integrated numerically. Parameter values, e.g., for
uptake and assimilation capacities and costs of uptake, assimilation, maintenance and growth, are estimated for a grass species,
Dactylis glomerata. Juvenile growth is simulated under optimal conditions with respect to irradiance and NO3
- availability and compared with literature data. Diurnal and daily patterns of C utilisation and respiration, expressed as
percentages of gross photosynthetic rate, are discussed. The model satisfactorily simulates typical responses to nutrient
and light limitation and pruning, such as redirected C allocation, adjusted root and leaf weight ratios and compensatory growth.
A sensitivity analysis is included for selected parameters.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
To obtain correction factors for estimating root dry weight from washed samples and to test the efficiency of various procedures for storing root samples, dry matter losses were determined by simulating root washing methods with roots obtained from a nutrient culture. For sugar beet dry matter losses were higher than values previously found for wheat and ryegrass: about 30% for the procedure normally used and about 40% for samples pretreated with sodium pyrophosphate. The largest share of water-soluble sugars was lost from root samples within one day of storing roots. The N content of roots expressed on the basis of remaining dry matter rose first during handling of the root samples and decreased in samples stored for a longer period. In most cases no cell wall material (cellulose and lignin) is lost from the root samples; expressed on the basis of remaining dry weight the contents consequently rose.Communication no. 2 of the Dutch Programme on Soil Ecology of Arable Farming Systems 相似文献
17.
AIMS: The purpose of this Botanical Briefing is to stimulate reappraisal of root growth, root/shoot partitioning, and analysis of other aspects of plant growth under heterogeneous conditions. SCOPE: Until recently, most knowledge of plant growth was based upon experimental studies carried out under homogeneous conditions. Natural environments are heterogeneous at scales relevant to plants and in forms to which they can respond. Responses to environmental heterogeneity are often localized rather than plant-wide, and not always predictable from traditional optimization arguments or from knowledge of the ontogenetic trends of plants growing under homogeneous conditions. These responses can have substantial impacts, both locally and plant-wide, on patterns of resource allocation, and significant effects on whole-plant growth. Results from recent studies are presented to illustrate responses of plants, plant populations and plant communities to nutritionally heterogeneous conditions. CONCLUSIONS: Environmental heterogeneity is a constant presence in the natural world that significantly influences plant behaviour at a variety of levels of complexity. Failure to understand its effects on plants prevents us from fully exploiting aspects of plant behaviour that are only revealed under patchy conditions. More effort should be invested into analysis of the behaviour of plants under heterogeneous conditions. 相似文献
18.
Allometry, root/shoot ratio and root architecture in understory saplings of deciduous dicotyledonous trees in central Japan 总被引:1,自引:0,他引:1
Plant allometry that is related to plant architecture and biomass allocation strongly influences a plants ability to grow in shaded forest understory. Some allometric traits can change with plant size. The present study compared crown and trunk allometries, root/shoot biomass allometry, and root architecture among understory saplings (0.25--5m height, except for two trees > 5 < 7 m) of seven deciduous dicotyledonous species in central Japan. Associations of the crown and trunk allometries with several plant morphological attributes were analyzed. Branch morphology (plagiotropyvs orthotropy) and life size were correlated with sapling crown and trunk allometries. Both large leaves and orthotropic branches were associated with a narrow small crown and slender trunk. The root/shoot ratio decreased rapidly with increasing plant height for saplings shorter than about 1.5 m. Less shade-tolerant species tended to have smaller root/shoot ratios for saplings taller than 1.5 m. With an increase in plant height, the branch/trunk biomass ratio decreased for saplings with plagiotropic branches but increased for saplings with orthotropic branches. Four subcanopy species (Acer distylum, Carpinus cordata, Fraxinus lanuginosa and Acanthopanax sciadophylloides) had superficial root systems; a common understory species (Sapium japonica) had a deep tap root system; and a canopy species (Magnolia obovata) and a subcanopy species (Acer tenuifolium) had heart root systems of intermediate depth. The root depth was not related to shade tolerance. Among species of the same height, the difference in fine root length can be 30-fold. 相似文献
19.
Yoko Kurosawa Shigeta Mori Mofei Wang Juan Pedro Ferrio Keiko Yamaji Kohei Koyama Toshikatsu Haruma Kohei Doyama 《Plant Species Biology》2021,36(2):146-156
As terrestrial plants are rooted in one place, their metabolism must be acclimatized to continuously changing environmental conditions. This process is influenced by different metabolic traits of plant organs during ontogeny. However, direct measurement of organ-specific metabolic rates is particularly scarce, and little is known about their roles in whole-plant metabolism. In this study, we investigated size scaling of respiration rate, fresh mass and surface area of leaves, stems and roots in 65 seedlings of Fagus crenata Blume (2 weeks to 16 months old). With the increase in plant mass, the proportion of roots in whole plants increased from 20.8 to 87.3% in fresh mass and from 12.8 to 95.0% in surface area, whereas there was only a 15.6 to 60.2% increase in respiration rate. As a result, the fresh-mass-specific and surface-area-specific respiration rates in the roots decreased by 85% and 90%, respectively, and these decreases were significantly size dependent. However, such a size-dependent decrease was not observed for the surface-area-specific respiration rate in the leaves and stems. It is likely that this rapid root development is specific to the early growth stage after germination and would help plants acquire water and nutrients efficiently (i.e., at relatively low respiratory carbon costs). Overall, it is probable that the establishment of F. crenata forests and survival of F. crenata seedlings could be promoted by substantial root growth, with a reduction in respiratory carbon cost. 相似文献