首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The niche‐complementarity hypothesis predicts that two sympatric species must differ in their requirements for one of the three main ecological dimensions (i.e. habitat use, diet, and activity time) to coexist. European pine marten Martes martes and stone marten M. foina are syntopic medium‐sized mustelids with very similar morphology and ecology for which resting sites are a key resource. To better understand how these species coexist, we investigated whether key features of their resting site pattern (number of resting sites, area over which they are distributed, main habitat type used for resting) differed. We used diurnal telemetry to identify resident individuals (e.g. spatially stable individuals over time) and to locate them during resting periods in a fragmented forested area in France. Stone marten used fewer resting sites distributed over a smaller surface area than pine marten. Most stone marten resting sites were located in open habitat (83%) in the proximity of human habitations, whereas pine martens rested almost exclusively in forest (98%). Sex, age, and season explained some variability in both the number of resting sites and the probability of resting within forested habitat for stone marten but not pine marten. The area covered by resting sites was larger in males than in females, but age modulated this difference in an opposite way for the two species. Such a pattern was expected given the intra‐sexual territoriality and the reproductive phenology of these species. Overall, stone marten showed higher inter‐individual variability in resting site pattern than pine marten. The particular pattern observed in subadult male stone martens during summer (increase in resting site surface area and in the probability to rest in forest) may reflect an attempt to settle in forests, and we discuss these implications in the context of interspecific competition.  相似文献   

2.
Coexistence of ecologically similar species relies on differences in one or more dimensions of their ecological niches, such as space, time and resources in diel and/or seasonal scales. However, niche differentiation may result from other mechanisms such as avoidance of high predation pressure, different adaptations or requirements of ecologically similar species. Stone marten (Martes foina) and pine marten (Martes martes) occur sympatrically over a large area in Central Europe and utilize similar habitats and food, therefore it is expected that their coexistence requires differentiation in at least one of their niche dimensions or the mechanisms through which these dimensions are used. To test this hypothesis, we used differences in the species activity patterns and habitat selection, estimated with a resource selection function (RSF), to predict the relative probability of occurrence of the two species within a large forest complex in the northern geographic range of the stone marten. Stone martens were significantly heavier, have a longer body and a better body condition than pine martens. We found weak evidence for temporal niche segregation between the species. Stone and pine martens were both primarily nocturnal, but pine martens were active more frequently during the day and significantly reduced the duration of activity during autumn-winter. Stone and pine martens utilized different habitats and almost completely separated their habitat niches. Stone marten strongly preferred developed areas and avoided meadows and coniferous or deciduous forests. Pine marten preferred deciduous forest and small patches covered by trees, and avoided developed areas and meadows. We conclude that complete habitat segregation of the two marten species facilitates sympatric coexistence in this area. However, spatial niche segregation between these species was more likely due to differences in adaptation to cold climate, avoidance of high predator pressure and/or food preferences by both species than competitive interaction between them.  相似文献   

3.
The stone marten (Martes foina) and the pine marten (M. martes) are closely related mammalian carnivores potentially subject to exploitative competition. The recent expansion of the pine marten into the intensively cultivated plain of the River Po (NW Italy), where previously only stone marten occurred, offered an interesting opportunity to analyse their relationships. We studied the distribution and diet of Martes species and trophic niche overlap between martens and red foxes (Vulpes vulpes) in two study areas, each with two pseudoreplicates, by analysing genotyped faeces. Our results seem to confirm the displacement of the stone marten from one study area, the pine marten being the only Martes species occurring where previously the stone marten had been reported. We found a large food niche overlap between red fox and both stone and pine martens, but with evidence of size-related differences in the consumption of some food items. We hypothesised that, due to the poor prey-base of the environment, highly altered by intensive crop cultivation, intense interspecific competition originally occurred between the red fox and stone marten. The heightening of interspecific competition caused by the entry of the pine marten in the predator guild may have caused the displacement of the stone marten, at least temporarily. The mechanism of such displacement needs to be clarified through further surveys in areas where the three species occur sympatrically.  相似文献   

4.
Pine martens (Martes martes) are subject to national and international conservation legislation throughout most of their European range. Yet population density and abundance estimates, which are a key component of effective conservation management, are lacking in many countries. In this study, a large-scale non-invasive survey was undertaken in 14 forested study sites throughout Ireland to assess variation in pine marten density and abundance. Pine marten hair samples were collected in each study site and analysed using genetic techniques to determine individual identity data. Density and abundance estimates were obtained using spatially explicit capture-recapture models and CAPWIRE. Across all study sites, a total of 93 individual pine marten were identified and captured 217 times. Estimated pine marten density varied from 0 to 2.60 individuals per km2 of forested habitat, with all but a single site having estimated densities of ≤1 pine marten per km2 of forest habitat. Mean population abundance estimates across all study sites ranged from 0 to 27 individuals. Spatially explicit capture-recapture models on combined data across all 14 study sites provided a mean density estimate of 0.64 (95% CI 0.49–0.81). Combining this with data on the current distribution and estimated area of forest habitat occupied by the species in Ireland, the total pine marten population abundance of pine marten in Ireland was estimated at 3043 (95% CI 2330–3852) individuals. This research has conducted the largest scale investigation of pine marten density and abundance in any part of its global distribution and provided an improved basis for future population assessment and monitoring of this species.  相似文献   

5.
Evaluating presence and habitat requirements of small carnivores is essential for their conservation. The Eurasian pine marten Martes martes, often described as a habitat specialist associated primarily with forest habitats, has been recently found to live even in patchily wooded country and in shrublands. We evaluated the environmental factors that determine the distribution of the pine marten in a Mediterranean landscape on the island of Sardinia (central Italy). Camera trapping sessions and scat surveys were carried out to assess the presence of the species, then a potential distribution model was developed using ecological niche factor analysis (ENFA), which requires only presence data. The pine marten selected highest altitudes, shrublands, rocky areas, and woodlands, and avoided urban areas and arable lands. Our results indicate that pine marten distribution in our study area is constrained by these variables. The ENFA analysis provided important clues about the distribution range of M. martes and its preferential environmental conditions, updating knowledge of its ecological requirements in Italy.  相似文献   

6.
  1. Closely related predator species often share several prey items, making it hard to differentiate the effects on their feeding habits of variation in food availability and of competition. We hypothesised that we could overcome this obstacle by quantifying and comparing nutritional niches.
  2. We reviewed dietary studies that assessed the relative bulk of each food item, as either per cent biomass or per cent mean volume, in the diet of two closely related species, pine marten Martes martes and stone marten Martes foina, and calculated the nutrient profiles (intakes of protein, lipids and carbohydrates) of each diet.
  3. Both martens’ diets were tightly clustered (mean values: 47% of energy from protein, 39% from lipid, and 14% from carbohydrate). In allopatry, the nutritional niches of the two species did not differ, but in sympatry, the stone marten ate more carbohydrates and less protein than the pine marten. In allopatry, the protein intake of the stone marten remained high (45–52%) in very different habitats, from cultivated lowland to Alpine forests.
  4. Our data suggest that stone marten frugivory may, at least partially, be the result of interspecific competition. By analysing dietary data in the framework of nutritional ecology, we could compare the feeding requirements of pine martens and stone martens more effectively than by using classical estimates of trophic niche overlap at the food item level. This approach may help to shed light on the trophic relationships of other competing species.
  相似文献   

7.
《Acta Oecologica》2002,23(4):231-237
We studied the response to forest fragmentation of a generalist carnivore, the stone marten Martes foina, in highly fragmented landscapes of central Spain. Five different areas (n = 178 fragments) in central Spain were surveyed. This paper analyses the relationship between fragment use by martens (measured through scat presence) and a series of variables related to the size, isolation and vegetation structure of each fragment by means of stepwise logistic regression. Size and isolation have an important effect on stone marten presence in fragments. Our results were similar to those found for other marten species in landscapes with coarse-grain fragmentation, but they contrast with other studies conducted in landscapes with fine-grain fragmentation. These data suggested that in highly fragmented landscapes, size and isolation factors resulting from forest fragmentation were responsible for determining marten responses, irrespective of their habitat generalism. Management policies for the stone marten in highly fragmented scenarios require the maintenance of large forests near continuous forest tracts in mountains or riparian woodlands.  相似文献   

8.
The closely related mustelids European pine marten (Martes martes) and stone marten (Martes foina) sympatrically inhabit a large area of Europe. However, given our limited knowledge of their bioecological relationships, their extremely elusive behaviour and the fact that their faeces cannot be distinguished on the basis of morphology alone, it is very difficult to monitor their populations. In this study, we describe a reliable non-invasive polymerase chain reaction (PCR)–restriction fragment length polymorphism (PCR-RFLP) method for distinguishing between M. martes and M. foina based on the analysis of deoxyribonucleic acid extracted from faeces samples. The method was specifically designed to avoid possible interference from potential prey mammals and other sympatric carnivores. The procedure consists of PCR amplifying a mitochondrial D-loop region followed by digesting the resulting 276-bp-long amplicons with the restriction enzymes HaeIII and RsaI. To assess the efficiency of this technique, we conducted a preliminary field study across the potential sympatric distribution areas of both marten species in the northern Iberian Peninsula. Out of 359 faeces samples collected, we identified 80 as specimens from the stone marten and 235 from the pine marten. Unequivocal species identification was thus possible in 88% of the faeces samples collected. These findings reveal the combined use of non-invasive genetic sampling and GIS technology to be a reliable and cost-effective procedure for improving our knowledge of the spatial distributions of sympatric marten species. This protocol could also be used to identify and improve information gaps, to develop effective research and management programmes and in population and landscape genetics studies of marten species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
1. We investigated the effects of forest fragmentation on American martens ( Martes americana Rhoads) by evaluating differences in marten capture rates (excluding recaptures) in 18 study sites with different levels of fragmentation resulting from timber harvest clearcuts and natural openings. We focused on low levels of fragmentation, where forest connectivity was maintained and non-forest cover ranged from 2% to 42%.
2. Martens appeared to respond negatively to low levels of habitat fragmentation, based on the significant decrease in capture rates within the series of increasingly fragmented landscapes. Martens were nearly absent from landscapes having > 25% non-forest cover, even though forest connectivity was still present.
3. Marten capture rates were negatively correlated with increasing proximity of open areas and increasing extent of high-contrast edges. Forested landscapes appeared unsuitable for martens when the average nearest-neighbour distance between open (non-forested) patches was <100 m. In these landscapes, the proximity of open areas created strips of forest edge and eliminated nearly all forest interior.
4. Small mammal densities were significantly higher in clearcuts than in forests, but marten captures were not correlated with prey abundance or biomass associated with clearcuts.
5. Conservation efforts for the marten must consider not only the structural aspects of mature forests, but the landscape pattern in which the forest occurs. We recommend that the combination of timber harvests and natural openings comprise <25% of landscapes ≥9 km2 in size.
6. The spatial pattern of open areas is important as well, because small, dispersed openings result in less forest interior habitat than one large opening at the same percentage of fragmentation. Progressive cutting from a single patch would retain the largest amount of interior forest habitat.  相似文献   

10.
Although typically considered as a forest specialist species, the European pine marten (Martes martes) is an example of a number of species that have recently been found to also live in fragmented landscapes. Considering that habitat fragmentation and loss is a major threat to the persistence of mammal species in such landscapes, we investigated the association between habitat characteristics and genetic diversity across four pine marten populations occupying contrasting landscapes in France with different degrees of forest availability and fragmentation. Bayesian and multivariate clustering methods evidenced the presence of three genetic clusters and isolation by distance between populations was found at the national scale. We found an overall moderate level of genetic variability, but no evidence of a bottleneck or deficit in heterozygosity in any of the populations. No pattern of isolation by distance was found within the populations, except in the one located in the Pyrenean Mountains which appeared partly isolated from other continental populations and also showed a lower level of genetic diversity. No obvious association between the pattern of genetic variability and the pattern of forested habitat characteristics was found. We discuss the possibility that pine martens show greater behavioural plasticity than typically expected allowing them to adapt to different habitat types.  相似文献   

11.
Cost surface (CS) models have emerged as a useful tool to examine the interactions between landscapes patterns and wildlife at large-scale extents. This approach is particularly relevant to guide conservation planning for species that show vulnerability to road networks in human-dominated landscapes. In this study, we measured the functional connectivity of the landscape in southern Portugal and examined how it may be related to stone marten road mortality risk. We addressed three questions: (1) How different levels of landscape connectivity influence stone marten occurrence in montado patches? (2) Is there any relation between montado patches connectivity and stone marten road mortality risk? (3) If so, which road-related features might be responsible for the species’ high road mortality? We developed a series of connectivity models using CS scenarios with different resistance values given to each vegetation cover type to reflect different resistance to species movement. Our models showed that the likelihood of occurrence of stone marten decreased with distance to source areas, meaning continuous montado. Open areas and riparian areas within open area matrices entailed increased costs. We found higher stone marten mortality on roads in well-connected areas. Road sinuosity was an important factor influencing the mortality in those areas. This result challenges the way that connectivity and its relation to mortality has been generally regarded. Clearly, landscape connectivity and road-related mortality are not independent.  相似文献   

12.
Pine martens (Martes martes) are forest specialists that depend either on large patches of forest or on the absence of barriers between smaller forest patches. It thus seems likely that they would disappear from landscapes with heavily fragmented forests and a high density of presumptive barriers that are typical of Central Europe. We studied the distribution of pine martens in a suburban landscape characterised by fragmented forests and a high density of presumptive barriers (e.g. housing areas, roads). We assessed the presence of pine martens using camera traps in a sample of 170 1?×?1-km quadrats and used occupancy modelling to account for imperfect detection. We found an almost complete and countrywide distribution of the pine marten. Larger roads and housing areas were not negatively related to its current distribution as we predicted. We conclude that pine martens are capable to survive in some heavily fragmented landscapes.  相似文献   

13.
Most studies on habitat selection among animals are conducted at local scales, whereas reliable determination of species requirements at larger spatial scales can be problematic. We used data available for NATURA 2000 sites to determine the habitat requirements of two relatively widespread and common species—pine marten Martes martes and stone marten Martes foina—in Southern Europe. Using presence-absence data, we applied statistical models at two spatial scales. At the local scale (within the dispersal distances of the species), sites occupied by martens were compared with unoccupied sites using buffers of different sizes, whereas at the regional scale, unoccupied sites were selected randomly. To adjust for spatial autocorrelation of data, penalised quasi-likelihood approximations were used. Both species of martens demonstrated preferences for areas with higher proportions of forest cover and steeper terrain. At the local, but not at the regional, scale, pine martens occurred at lower elevations, whilst stone martens occurred at higher elevations. We found that climatic variables (mean temperature, precipitation) had no significant effect on the presence of the martens. The results of our analyses generally confirmed findings of previous studies on habitat selection of both marten species in Southern Europe. This demonstrates the utility of data collected for NATURA 2000 sites for use in various analyses such as conservation planning and evaluating the impact of climate change on the distribution of animal species.  相似文献   

14.
15.
Landscape genetics provides a valuable framework to understand how landscape features influence gene flow and to disentangle the factors that lead to discrete and/or clinal population structure. Here, we attempt to differentiate between these processes in a forest‐dwelling small carnivore [European pine marten (Martes martes)]. Specifically, we used complementary analytical approaches to quantify the spatially explicit genetic structure and diversity and analyse patterns of gene flow for 140 individuals genotyped at 15 microsatellite loci. We first used spatially explicit and nonspatial Bayesian clustering algorithms to partition the sample into discrete clusters and evaluate hypotheses of ‘isolation by barriers’ (IBB). We further characterized the relationships between genetic distance and geographical (‘isolation by distance’, IBD) and ecological distances (‘isolation by resistance’, IBR) obtained from optimized landscape models. Using a reciprocal causal modelling approach, we competed the IBD, IBR and IBB hypotheses with each other to unravel factors driving population genetic structure. Additionally, we further assessed spatially explicit indices of genetic diversity using sGD across potentially overlapping genetic neighbourhoods that matched the inferred population structure. Our results revealed a complex spatial genetic cline that appears to be driven jointly by IBD and partial barriers to gene flow (IBB) associated with poor habitat and interspecific competition. Habitat loss and fragmentation, in synergy with past overharvesting and possible interspecific competition with sympatric stone marten (Martes foina), are likely the main factors responsible for the spatial genetic structure we observed. These results emphasize the need for a more thorough evaluation of discrete and clinal hypotheses governing gene flow in landscape genetic studies, and the potential influence of different limiting factors affecting genetic structure at different spatial scales.  相似文献   

16.
To investigate the possible role of selected pathogens in the decline of endangered European mink (Mustela lutreola) populations and the potential for these pathogens to affect mink survival, a serologic survey was conducted using serum samples collected from March 1996 to March 2003 in eight departments of south-western France. In total, 481 free-ranging individuals of five mustelid species (including the European mink) were tested. Sympatric mustelids can serve as sentinels to determine the presence of antibodies to viruses in the study area that could potentially infect mink. Antibodies to Canine distemper virus (CDV) were detected in all species; 9% of 127 European mink, 20% of 210 polecats (Mustela putorius), 5% of 112 American mink (Mustela vison), 33% of 21 stone marten (Martes foina) and 5% of 20 pine marten (Martes martes). Antibody prevalence was significantly higher in stone marten and polecats, possibly because their ranges overlap more closely with that of domestic species than that of the other species tested. Antibodies to Canine adenovirus were detected in all species but the pine marten; antibody prevalence estimates ranging from 2% to 10%. Antibodies to canine parainfluenza virus were detected in 1% of European mink, 1% of American mink and 5% of tested polecats but were not detected in Martes species. Antibodies to Rabies virus (RV) were detected in three animals, possibly because of interspecies transmission of bat lyssaviruses as the sampling area is considered to be free of RV, or to a lack of test specificity, as antibody titers were low. The high antibody prevalence to potentially lethal CDV suggests that this pathogen could have significant effects on the free-ranging populations and has implications for the conservation efforts for the endangered European mink.  相似文献   

17.
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.  相似文献   

18.
Species identification is an important issue in conservation and a particular focus for wildlife forensics. Molecular biological methods retain a unique power to differentiate between difficult samples that lack other identifiable characteristics. The pine marten (Martes martes) and sable (Martes zibellina) are closely related species with very similar pelage characteristics and are often difficult to distinguish from each other. The sable, however, in contrast to the pine marten, remains an endangered and protected animal in China with both hunting and fur trade strictly prohibited for this species. Here, we present a polymerase chain reaction-based restriction fragment length polymorphism method for distinguishing the two species. We sequenced a 638-bp fragment of cytochrome b gene in 39 sables, 68 pine martens, and 10 stone martens and identified all variable nucleotides. A new primer pair was subsequently designed to amplify a 316-bp fragment containing restriction sites of enzyme BseG I and BamH I that are different among martens. When the fragment was cut using BseG I, the resulting restriction pattern was identical in the sable and pine marten, but differed from all other martens. When cut using BamH I, the fragment generated two diagnostic fragments in the sable which could distinguish them from pine martens. This method was valid for all haplotypes of sable and pine marten thus far identified and has high potentially applicability for the identification of the two species.  相似文献   

19.
We studied factors affecting density and spacing patterns in the pine marten Martes martes population inhabiting temperate forests of Bia?owieza National Park, eastern Poland. From 1985/1986 to 1995/1996 marten densities ranged from 3.63 to 7.57 individuals 10 km?2 (mean 5.4) and were positively correlated with abundance of forest rodents in the previous year. The rate of marten population growth was inversely density‐dependent and positively related to rodent density. Annual mortality rate averaged 0.384 and tended to be negatively related to marten densities. Mean annual home range of males (2.58 km2, SE=0.24) was larger than that of females (1.41 km2, SE=0.20). Seasonal home ranges also differed significantly between males and females. Both sexes held the smallest ranges in December–January. Female ranges increased in April–May, whereas those of males increased in June–September when they were mating. Fidelity of pine martens to their home ranges was very high. The mean shift between arithmetic centres of seasonal ranges was 0.25 km, and the ranges recorded in two consecutive seasons overlapped, on average, by 87–90%. We observed very little home range overlap between neighbouring male (mean 4–6%) or female (mean 6%) marten. Year round the neighbouring individuals of the same sex neither avoided nor attracted each other. Females attracted males only during the spring‐summer mating season. A review of other studies has documented that winter severity and seasonal variation in ecosystem productivity were essential factors shaping the biogeographic variation in pine marten densities between 41o and 68oN. The density of marten populations increased in areas with mild winters and lower seasonality. Maximum population densities (indicative of habitat carrying capacity) were correlated with mean winter temperature. In Europe, male home ranges increased with decreasing forest cover in a study area, whereas female ranges varied positively with rodent abundance.  相似文献   

20.
Studies at small spatial scale are often fundamental to highlight the behavioural plasticity of a species and thus have important implications for conservation planning, in particular for species usually considered as habitat specialists. We investigated second-order habitat selection of the European pine marten in an area dominated by deciduous oak forest and open fields in central Italy, by radio-tracking 16 pine martens (eight males, eight females). Pine martens placed home ranges in areas with more open field than in the study area, whereas woodland (oak and conifer forests) comprised a smaller portion of the home range than predominant forest character of the studied area. Although the presence of the species in the open habitats has been documented, to our knowledge, our results provide the first evidence of home range establishment in this cover type by pine marten at population level. The combination of low predation risk and high availability of resources could allow pine martens to occupy open fields in our study area. We highlighted different individual strategies of habitat selection, with some individuals placing home ranges in areas with high forest coverage while others occupying open areas. We found no effects of sex and body condition on habitat selection, and this could indicate that in the study area, both forested and non-forested cover types, such as open fields, shrub and anthropic areas, can provide adequate food, overhead cover and resting sites for all individuals. Pine marten ability to occupy open fields seems thus more related to the behavioural flexibility of the species, rather than to the need to supplement dens and forage from complementary lower quality habitat. The high quality of the Mediterranean continental area studied could also explain the selection of open areas by the pine marten. Our results offer useful information on pine marten ecology and may be helpful for conservation management of this species in southern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号