首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug resistance to anaplastic lymphoma kinase (ALK) inhibitors (crizotinib and ceritinib) is caused by mutation in the region encoding kinase domain of ALK. Compounds with potential ability to inhibit all strains of ALK are a solution to tackle the problem of drug resistance. In this study, we delineated positions of residues possessing the ability to make ALK drug resistant upon mutation by assessing them using five parameters (conservation index, binding-site root-mean-square deviation, protein structure stability, change in ATP, and drug-binding affinity). Four residual positions (Leu 1122, Thr 1151, Phe 1245, and Gly 1269) were ascertained. This study will be beneficial for designing drugs with better proficiency against ALK and the issues of drug resistance. This study can be taken as a pipeline for investigating drug-resistant mutations in other diseases as well.  相似文献   

2.
Abstract

Lysine-specific demethylase (LSD1) is an important enzyme for histone lysine methylation. Downregulated LSD1 expression has been linked to cancer proliferation, migration and invasion, indicating that it is an important target for anti-cancer medication. In the present study, the binding modes of a recent reported new series of LSD1 inhibitor were analyzed by using molecular docking and molecular dynamics simulations. A binding mode of these inhibitors was proposed based on the results. According to this binding mode, Thr628 can form two important hydrogen bonds with these inhibitors. Moreover, if the inhibitors can form an additional hydrogen bond with hydroxyl group of Ser289, the potency of the inhibitor can be greatly improved, such as the best inhibitor (compound 12d) in this series. Hydrophobic interactions between the inhibitors and LSD1 are also key contributor here, such as the interaction between the hydrophobic groups (benzene rings) of the inhibitors and the hydrophobic residues of LSD1 (including Val288, Val317, Val811, Ala814, Leu659, Trp751 and Tyr761). Based on the results and analysis, it may provide some useful information for future novel LSD1 inhibitor design.  相似文献   

3.
Ran Friedman 《Proteins》2017,85(11):2143-2152
Fms‐like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is a drug target for leukemias. Several potent inhibitors of FLT3 exist, and bind to the inactive form of the enzyme. Unfortunately, resistance due to mutations in the kinase domain of FLT3 limits the therapeutic effects of these inhibitors. As in many other cases, it is not straightforward to explain why certain mutations lead to drug resistance. Extensive fully atomistic molecular dynamics (MD) simulations of FLT3 were carried out with an inhibited form (FLT‐quizartinib complex), a free (apo) form, and an active conformation. In all cases, both the wild type (wt) proteins and two resistant mutants (D835F and Y842H) were studied. Analysis of the simulations revealed that impairment of protein‐drug interactions cannot explain the resistance mutations in question. Rather, it appears that the active state of the mutant forms is perturbed by the mutations. It is therefore likely that perturbation of deactivation of the protein (which is necessary for drug binding) is responsible for the reduced affinity of the drug to the mutants. Importantly, this study suggests that it is possible to explain the source of resistance by mutations in FLT3 by an analysis of unbiased MD simulations.  相似文献   

4.
5.
Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.  相似文献   

6.
TYK2 is a nonreceptor tyrosine kinase, member of the Janus kinases (JAK), with a central role in several diseases, including cancer. The JAKs' catalytic domains (KD) are highly conserved, yet the isolated TYK2-KD exhibits unique specificities. In a previous work, using molecular dynamics (MD) simulations of a catalytically impaired TYK2-KD variant (P1104A) we found that this amino acid change of its JAK-characteristic insert (αFG), acts at the dynamics level. Given that structural dynamics is key to the allosteric activation of protein kinases, in this study we applied a long-scale MD simulation and investigated an active TYK2-KD form in the presence of adenosine 5′-triphosphate and one magnesium ion that represents a dynamic and crucial step of the catalytic cycle, in other protein kinases. Community analysis of the MD trajectory shed light, for the first time, on the dynamic profile and dynamics-driven allosteric communications within the TYK2-KD during activation and revealed that αFG and amino acids P1104, P1105, and I1112 in particular, hold a pivotal role and act synergistically with a dynamically coupled communication network of amino acids serving intra-KD signaling for allosteric regulation of TYK2 activity. Corroborating our findings, most of the identified amino acids are associated with cancer-related missense/splice-site mutations of the Tyk2 gene. We propose that the conformational dynamics at this step of the catalytic cycle, coordinated by αFG, underlie TYK2-unique substrate recognition and account for its distinct specificity. In total, this work adds to knowledge towards an in-depth understanding of TYK2 activation and may be valuable towards a rational design of allosteric TYK2-specific inhibitors.  相似文献   

7.
The structures of fully active cyclin-dependent kinase-2 (CDK2) complexed with ATP and peptide substrate, CDK2 after the catalytic reaction, and CDK2 inhibited by phosphorylation at Thr14/Tyr15 were studied using molecular dynamics (MD) simulations. The structural details of the CDK2 catalytic site and CDK2 substrate binding box were described. Comparison of MD simulations of inhibited complexes of CDK2 was used to help understand the role of inhibitory phosphorylation at Thr14/Tyr15. Phosphorylation at Thr14/Tyr15 causes ATP misalignment for the phosphate-group transfer, changes in the Mg2+ coordination sphere, and changes in the H-bond network formed by CDK2 catalytic residues (Asp127, Lys129, Asn132). The inhibitory phosphorylation causes the G-loop to shift from the ATP binding site, which leads to opening of the CDK2 substrate binding box, thus probably weakening substrate binding. All these effects explain the decrease in kinase activity observed after inhibitory phosphorylation at Thr14/Tyr15 in the G-loop. Interaction of the peptide substrate, and the phosphorylated peptide product, with CDK2 was also studied and compared. These results broaden hypotheses drawn from our previous MD studies as to why a basic residue (Arg/Lys) is preferred at the P+2 substrate position. Figure View of the substrate binding site of the fully active cyclin-dependent kinase-2 (CDK2) (pT160-CDK2/cyclin A/ATP). The pThr160 activation site is located in the T-loop (yellow secondary structure). The G-loop, which partly forms the ATP binding site, is shown in blue. The Thr14 and Tyr15 inhibitory phosphorylation sites located in the G-loop are shown in licorice representation  相似文献   

8.
c-Met kinase has been considered as an attractive target for developing antitumor agents. The strong interactions between Tyr1230 and the inhibitors emphasized its importance for ligand binding. The clinically related Tyr1230 mutations have made negative impacts on current c-Met kinase inhibitors, especially the exquisitely selective ones, like PF-04217903, while the multi-targeted inhibitors, like Crizotinib, were not affected so much. In this study, the protein–ligand interactions between c-Met kinase domain (wild, Y1230C and Y1230H) and these inhibitors were compared. The binding site was expanded and the post-mutated regions became solvent accessible. The heavy dependency of PF-04217903 on the interactions with Tyr1230 resulted in the steep decrease of its potency against the Y1230 mutants. It was found that the ligand entrance region contributed consistently to the binding of Crizotinib, but not PF-04217903. Additional groups substituted in the ligand entrance region with stable interactions should be beneficial for improving the inhibitory activity of PF-04217903 against the Y1230 mutants. These findings will facilitate the discovery of potent inhibitors against Y1230 mutated c-Met kinase.  相似文献   

9.
Morra G  Colombo G 《Proteins》2008,72(2):660-672
Most proteins must fold to a well-defined structure with a minimal stability to perform their function. Here we use a simple, molecular dynamics-based, energy decomposition approach to map the principal energetic interactions in a set of proteins representative of different folds. This work involves the all-atom simulation and analysis of the native structures and mutants of five different proteins representative of an all-alpha (yACPB, Protein A), all-beta (SH3), and a mixed alpha/beta fold (Proteins G and L). Given a certain structure, a native sequence and a set of mutants, we show that our model discriminates the ability of a mutation to yield a more or less stable protein, in agreement with experimental data, catching the principal energetic determinants of protein stabilization. Our approach identifies the interaction determinants responsible to define a fold and shows that mutations can either modulate the strength of pair-wise coupling between residues important for folding, or modify the profile of the principal interactions. Furthermore, we address the question of how to evaluate the fitness of a sequence to a given structure by comparing the information contained in the energy map, which recapitulates the chemistry of the sequence, to that contained in the contact map, which recapitulates the fold topology. The results show that the better fit between the energetic properties of the sequence and the fold topology corresponds to a higher stabilization of the protein. We discuss the relevance of these observations to the analysis of protein designability and to the rational evolution of new sequences.  相似文献   

10.
Structural and dynamic properties of bovine pancreatic trypsin inhibitor (BPTI) in aqueous solution are investigated using two molecular dynamics (MD) simulations: one of 1.4 ns length and one of 0.8 ns length in which atom-atom distance bounds derived from NMR spectroscopy are included in the potential energy function to make the trajectory satisfy these experimental data more closely. The simulated properties of BPTI are compared with crystal and solution structures of BPTI, and found to be in agreement with the available experimental data. The best agreement with experiment was obtained when atom-atom distance restraints were applied in a time-averaged manner in the simulation. The polypeptide segments found to be most flexible in the MD simulations coincide closely with those showing differences between the crystal and solution structures of BPTI. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The human retinal pigment epithelium-specific 65-kDa protein (hRPE65) plays a crucial role within the retinoid visual cycle and several mutations affecting either its expression level or its enzymatic function are associated with inherited retinal diseases such as Retinitis Pigmentosa. The gene therapy product voretigene neparvovec (Luxturna) has been recently approved for treating hereditary retinal dystrophies; however, the treatment is currently accessible only to patients presenting confirmed biallelic mutations that severely impair hRPE65 function, and many reported hRPE65 missense mutations lack sufficient evidences for proving their pathogenicity. In this context, we developed a computational approach aimed at evaluating the potential pathogenic effect of hRPE65 missense variants located on the dimerisation domain of the protein. The protocol evaluates how mutations may affect folding and conformation stability of this protein region, potentially helping clinicians to evaluate the eligibility for gene therapy of patients diagnosed with this type of hRPE65 variant of uncertain significance.  相似文献   

12.
We have performed discontinuous molecular dynamics simulations of the thermodynamics and stability of a tetrameric beta-sheet complex that contains four identical four-stranded antiparallel beta-sheet peptides. The potential used in the simulation is a hybrid Go-type potential characterized by the bias gap parameter g, an artificial measure of the preference of a model protein for its native state, and the intermolecular contact parameter eta, which measures the ratio of intermolecular to intramolecular native attractions. Despite the simplicity of the model, a complex set of thermodynamic transitions for the beta-sheet complex is revealed that shows there are three distinct oligomer (partially ordered, ordered, and highly ordered beta-sheet complex) states and four noninteracting monomers phases. The thermodynamic properties of the three oligomer states strongly depend on both the size of the intermolecular contact parameter eta and the temperature. The partially ordered beta-sheet complex is made up of four ordered globules and is observed at intermediate to large eta at high temperatures. The ordered beta-sheet complex contains four native beta-sheets and is located at small to intermediate eta at low temperatures in the phase diagram. The highly ordered beta-sheet complex has fully-stiff beta-sheet strands, the same as the global energy minimum structure, and is observed for all eta at low temperatures.  相似文献   

13.
Human immunodeficiency virus type 1 protease is essential for virus replication and maturation and has been considered as one of the important drug target for the antiretroviral treatment of HIV infection. The majority of HIV infections are caused due to non-B subtypes in developing countries. Subtype AE is spreading rapidly and infecting huge population worldwide. Understanding the interdependence of active and non-active site mutations in conferring drug resistance is crucial for the development effective inhibitors in subtype AE protease. In this work, we have investigated the mechanism of resistance against indinavir (IDV) due to therapy selected active site mutation V82F, non-active site mutations PF82V and their cooperative effects PV82F in subtype AE-protease using molecular dynamics simulations and binding free energy calculations. The simulations suggested all the three complexes lead to decrease in binding affinity of IDV, whereas the PF82V complex resulted in an enhanced binding affinity compared to V82F and PV82F complexes. Large positional deviation of IDV was observed in V82F complex. The preservation of hydrogen bonds of IDV with active site Asp25/Asp25′ and flap residue Ile50/50′ via a water molecule is crucial for effective binding. Owing to the close contact of 80s loop with Ile50′ and Asp25, the alteration between residues Thr80 and Val82, further induces conformational change thereby resulting in loss of interactions between IDV and the residues in the active site cavity, leading to drug resistance. Our present study shed light on the effect of active, non-active site mutations and their cooperative effects in AE protease.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
In this study, the binding of the enzyme chitinase A1 (afChiA1) from the plant-type Aspergillus fumigatus with four potent inhibitors, allosamidin (ASM), acetazolamide (AZM), 8-chloro-theophylline (CTP) and kinetin (KIT) is investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. The results reveal that the electrostatic interactions play an important role in the stabilisation of the binding of afChiA1 with inhibitors. Based on the binding energy of afChiA1-ligands, the key residues (Gln37 and Trp312) in the active binding pocket of the complex systems are confirmed by molecular mechanics/Poisson–Boltzmann surface area method, and the active inhibitors, ASM and AZM, both could form strong interaction with Gln37 and Trp312, and the non-active ligands, CTP and KIT, could not interact with these two residues, which is consistent with the result of experimental report. Then, it is identified that Gln37 and Trp312 should be one of the important active site residues of afChiA1.  相似文献   

15.
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.  相似文献   

16.
Zacharias M 《Proteins》2004,54(4):759-767
Most current docking methods to identify possible ligands and putative binding sites on a receptor molecule assume a rigid receptor structure to allow virtual screening of large ligand databases. However, binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a bound ligand. An approach is presented that allows relaxation of the protein conformation in precalculated soft flexible degrees of freedom during ligand-receptor docking. For the immunosuppressant FK506-binding protein FKBP, the soft flexible modes are extracted as principal components of motion from a molecular dynamics simulation. A simple penalty function for deformations in the soft flexible mode is used to limit receptor protein deformations during docking that avoids a costly recalculation of the receptor energy by summing over all receptor atom pairs at each step. Rigid docking of the FK506 ligand binding to an unbound FKBP conformation failed to identify a geometry close to experiment as favorable binding site. In contrast, inclusion of the flexible soft modes during systematic docking runs selected a binding geometry close to experiment as lowest energy conformation. This has been achieved at a modest increase of computational cost compared to rigid docking. The approach could provide a computationally efficient way to approximately account for receptor flexibility during docking of large numbers of putative ligands and putative docking geometries.  相似文献   

17.
18.
Choi Y  Lee JH  Hwang S  Kim JK  Jeong K  Jung S 《Biopolymers》2008,89(2):114-123
The conformational characteristics of glycosylated- and unglycosylated bovine pancreatic ribonuclease A (RNaseA) were traced with unfolding molecular dynamics simulations using CHARMM program at 470 K. The glycosylated RNase (Glc_RNase) possesses nearly identical protein structure with RNaseA, differing only by presence of a single acetylglucosamine residue N-linked to Asn34 in the RNaseA. Attaching of monomeric N-acetylglucosamine residue to the Asn34 in RNaseA resulted in a change of denaturing process of Glc_RNase. Simulations showed that the unfolding of RNaseA involved significant weakening of nonlocal interactions whereas the glycosylation led Glc_RNase to preserve the nonlocal interactions even in its denatured form. Even in simulations over 8 ns at 470 K, Glc_RNase remained relatively stable as a less denatured conformation. However, conformation of RNaseA was changed to a fully unfolded state before 3 ns of the simulations at 470 K. This difference was due to fact that formation of hydrogen bond bridges and nonlocal contacts induced by the attached N-acetylglucosamine of Glc_RNase showing in the unfolding simulations. These high-temperature unfolding MD simulations provided a theoretical basis for the previous experimental work in which Glc_RNase showed slower unfolding kinetics compared with unglycosylated RNaseA, suggesting that single N-glycosylation induced retardation of unfolding process of the ribonuclease protein.  相似文献   

19.
Twelve mutations were constructed to improve the thermostability of glucoamylase from Aspergillus awamori based on the results of molecular dynamics simulations. The thermal unfolding of the catalytic domain followed a putative hierarchical behavior. In addition, the unfolding of the 13 alpha-helices obeyed the random ordered mechanism, in which the alpha-helices 8, 1 and 11 unfolded more rapidly than the others. The catalytic center was well protected by the (alpha/alpha)(6)-barrel at simulation temperatures up to 600 K, whereas the catalytic base, E400, migrated from its original interior pocket to the surface of the catalytic domain by surmounting the hydrophobic barrier provided by alpha-helices 12 and 13 at 800 K. The disulfide bonds engineered to 'lock' the alpha-helix 11 on the surface of the catalytic domain dramatically increased the thermostability. Substituting G396 and G407 with Ala residues slightly increased the thermostability, whereas their specific activity and catalytic efficiency were reduced. This indicates that the introduced residues with higher hydrophobicity were favorable in the loop between alpha-helices 12 and 13, whereas they partially destroyed the hydrogen bond and salt linkage network in the catalytic center. Alpha-helices 12 and 13 can be stabilized by introducing residues with higher hydrophobicity, except for the H391M mutation.  相似文献   

20.
Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号