首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine what shapes the distributions of cryptic species, we aimed to unravel ecological niches and geographical distributions of three cryptic bat species complexes in Iberia, Plecotus auritus/begognae, Myotis mystacinus/alcathoe and Eptesicus serotinus/isabellinus (with 44, 69, 66, 27, 121 and 216 records, respectively), considering ecological interactions and biogeographical patterns. Species distribution models (SDMs) were built using a presence‐only technique (Maxent), incorporating genetically identified species records with environmental variables (climate, habitat, topography). The most relevant variables for each species’ distribution and respective response curves were then determined. SDMs for each species were overlapped to assess the contact zones within each complex. Niche analyses were performed using niche metrics and spatial principal component analyses to study niche overlap and breadth. The Plecotus complex showed a parapatric distribution, although having similar biogeographical affinities (Eurosiberian), possibly explained by competitive exclusion. The Myotis complex also showed Eurosiberian affinities, with high overlap between niches and distribution, suggesting resource partitioning between species. Finally, E. serotinus was associated with Eurosiberian areas, while E. isabellinus occurred in Mediterranean areas, suggesting possible competition in their restricted contact zone. This study highlights the relevance of considering potential ecological interactions between similarly ecological species when assessing species distributions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 ,150–162.  相似文献   

2.
Resource partitioning is an essential mechanism enabling species coexistence. The resources that are used by an animal are linked to its morphology and ecology. Therefore, similar species should use similar resources. The ecological niche of an individual summarizes all used resources and is therefore composed of several dimensions. Many methods are established to study different dimensions of an animal's niche. The aim of this study was to demonstrate that a combination of suitable methods is needed to study spatial and dietary resource partitioning of sympatric species in detail. We hypothesized that, while each individual method might identify differences between species, the combined results of several methods will lead to a more complete picture of spatial and dietary resource partitioning. As model organisms we chose the sympatric insectivorous bat species Myotis bechsteinii, M. nattereri, and P. auritus. We examined horizontal habitat use by telemetry, vertical habitat use by measuring δ13C, trophic position by measuring δ15N in wing membrane, and diet composition by molecular fecal analysis. Our results show that each method is able to provide information about spatial/dietary resource partitioning. However, considering further dimensions by combining several methods allows a more comprehensive assessment of dietary and spatial resource partitioning in bats.  相似文献   

3.
Although widespread, the ecology of the whiskered bat, Myotis mystacinus in Europe remains poorly understood. Ireland is positioned at the most western extreme of this species’ range. To ascertain the ecology of M. mystacinus at its geographic range extreme, the roosting behaviour, home range and habitat use of females in a maternity roost in Ireland was investigated by radio-tracking. M. mystacinus were active in a diversity of habitats: namely, mixed woodland, riparian vegetation, arable land and rough grassland. However, only mixed woodland and riparian habitats were selected as core foraging areas. This is in contrast to a previous study from Britain where only pasture was utilised but is in agreement with data from Slovakia, where woodland was also selected, whilst riparian areas were also utilised by this species in Germany. A high degree of overlap in the foraging areas of individuals was observed. A total of seven roosts were utilised by tracked bats and roost switching behaviour was observed. We discuss our contrasting results in respect to range limitations, regional variability in landscape structure and the composition of bat communities. The present results have implications for the conservation of M. mystacinus within Ireland and other parts of its range, highlighting the need for range wide ecological studies. Regional variability in the ecology of bats related to landscape factors is an important consideration for bat conservation and therefore must be incorporated into future management plans.  相似文献   

4.
We determined the foraging habitats of the northern batEptesicus nilssonii (Keyserling et Blasius, 1839), Brandt’s batMyotis brandtii (Eversmann, 1845), whiskered batMyotis mystacinus (Kuhl, 1819), Daubenton’s batMyotis daubentonii (Kuhl, 1819) and brown long-eared batPlecotus auritus (Linnaeus, 1758) in southern Finland. Among these species, we compared the diversities of foraging habitats, linear feature preference and the bats’ tendencies to forage simultaneously.Eptesicus nilssonii was the most opportunistic, foraging in a wide range of habitats.Myotis daubentonii (94%) foraged mainly on water habitats, whileM. brandtii/mystacinus (89%) andP. auritus (66%) foraged mainly in forest habitats. The diversities of foraging habitats used byE. nilssonii andP. auritus were higher than those ofM. brandtii/mystacinus andM. daubentonii. Both E.nilssonii andP. auritus foraged mostly alone or in small numbers, whileM. brandtii/mystacinus tended to gather in large numbers to forage in the same habitat. Half ofE. nilssonii and 46% ofM. daubentonii foraged over linear features, while other species did not use linear features to such an extent. Management and conservation of foraging habitats are needed especially forM. brandtii/mystacinus andM. daubentonii, which are more specialized thanE. nilssonii and P. auritus.  相似文献   

5.
Varanid lizards, which vary considerably in body mass both interspecifically and intraspecifically, are generally considered to be morphologically similar. However, significant and non-isometric variation in the relative appendage dimensions for 17 species of Western Australian goannas suggest that these lizards are not morphologically conservative. The first and second canonical variates clearly distinguish the two subgeneral Odatria and Varanus, and species are generally sexually dimorphic. The morphological variation observed among these 17 species of goanna is associated with foraging mode and ecology. However, no single or small group of morphological dimensions discriminates phylogenetic groups, sexes, or ecological groups, and body size is an important component in these analyses. J. Morphol. 233:127–152, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.  相似文献   

7.
Sandfly species (Diptera: Psychodidae) are suspected or proven vectors of Leishmania spp. in the American region. Understanding niche conservatism (NC) in insect vectors allows an understanding of constraints on adaptive responses, and thus implications for disease ecology. Therefore, in this study, the authors evaluated NC in three vector species of leishmaniasis (Lutzomyia gomezi, Psathyromyia shannoni and Pintomyia ovallesi) in Central and South America. For this, the authors performed niche identity and similarity testing through paired comparisons in ENMTools and niche overlap in Niche Analyst. The authors found that species niches were more similar to each other than if the points had been randomly extracted, and they also found extensive similarity between Pa. shannoni and Lu. gomezi niches and in Pa. shannoni niches over different timescales. The authors suggest Pa. shannoni as a priority species due to fundamental niche similarity with phylogenetically related species and also its extensive evolutionary history and ecological plasticity that could affect the emergence and resurgence of leishmaniasis in areas endemic by this vector.  相似文献   

8.
  1. Closely related predator species often share several prey items, making it hard to differentiate the effects on their feeding habits of variation in food availability and of competition. We hypothesised that we could overcome this obstacle by quantifying and comparing nutritional niches.
  2. We reviewed dietary studies that assessed the relative bulk of each food item, as either per cent biomass or per cent mean volume, in the diet of two closely related species, pine marten Martes martes and stone marten Martes foina, and calculated the nutrient profiles (intakes of protein, lipids and carbohydrates) of each diet.
  3. Both martens’ diets were tightly clustered (mean values: 47% of energy from protein, 39% from lipid, and 14% from carbohydrate). In allopatry, the nutritional niches of the two species did not differ, but in sympatry, the stone marten ate more carbohydrates and less protein than the pine marten. In allopatry, the protein intake of the stone marten remained high (45–52%) in very different habitats, from cultivated lowland to Alpine forests.
  4. Our data suggest that stone marten frugivory may, at least partially, be the result of interspecific competition. By analysing dietary data in the framework of nutritional ecology, we could compare the feeding requirements of pine martens and stone martens more effectively than by using classical estimates of trophic niche overlap at the food item level. This approach may help to shed light on the trophic relationships of other competing species.
  相似文献   

9.
Wilson's warbler comprises three subspecies separated into two geographic groups: C. p. pusilla that breeds in eastern North America; and C. p. pileolata and C. p. chryseola that breed in western North America. Given the differences between the groups in genetics, morphology, habitat use, and population decline, we tested for ecological niche similarity in both their breeding and wintering distribution using niche modeling based on temperature and precipitation data. We first conducted an inter‐prediction approach considering the percent of summer and winter localities of one group that are predicted by the potential distribution of the alternate group. We also applied a null model approach that compares self‐predictions and pseudoreplicates of each group to indicate similarity, divergence, or indeterminate niche overlap. Finally, we compared ecological distances between and within groups using the Gower similarity equation. We found that the western group had an ecological niche of broader climatic conditions, while the eastern group had a narrower ecological niche. The inter‐prediction approach showed that, for both summering and wintering ranges, ecological niche models of the western group predicted ~50% of the observed distribution of the eastern group, whereas eastern group models predicted < 18% of the western group distribution. The null model approach found that similarity in ecological niches was indeterminate, possibly due to the large area occupied by the two groups; but it suggests a more restricted set of climatic conditions of the eastern group distribution. However, the Gower coefficients demonstrated that the ecological distance between the two geographic groups was larger than the ecological distance within groups, indicating distinct ecological niches. Overall, our results support the hypothesis that the eastern and western groups of Wilson's warbler are two cryptic species; this should be taken into consideration for future analyses, particularly with respect to vulnerability categorization and conservation efforts.  相似文献   

10.
Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, in Cinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life  相似文献   

11.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

12.
We monitored bats hibernating in the Tatra Mountains during winters between 1997 and 2012. The Tatras are Central Europe’s second-highest massif after the Alps. Our winter censuses identified 14 species of bats hibernating in caves of the Polish Tatras. The most characteristic features of these winter bat assemblages were the dominance of Myotis mystacinus and high numbers of Eptesicus nilssonii. During the monitoring period, we noted qualitative and quantitative changes in the hibernating bat fauna. Two thermophilous species not recorded earlier and absent during the entire Holocene appeared: Rhinolophus hipposideros and Myotis emarginatus. The abundance of M. mystacinus, M. daubentonii, E. nilssonii and Plecotus auritus increased. We found no such changes in the abundance of M. myotis or M. nattereri. The Tatra Mountains are a key region for the occurrence of bats of the mystacinus group (particularly M. mystacinus sensu stricto) in Europe, and for E. nilssonii an important region in Central Europe.  相似文献   

13.
14.
In May — August, bats were mist-netted along an altitudinal gradient of 350–1350 m a.s.l. in the Pol’ana Mts area, to verify the correlation of species number decrease and the increase in elevation, to find which species could be predictors of certain altitude levels and to compare the sexual occurrence of species in various altitudes. Seventeen bat species were recorded. The most abundant mist-netted species were Myotis daubentonii (16%), M. myotis (13%) and M. mystacinus (12%). Otherwise, the most frequently caught species were M. mystacinus (40%), Eptesicus serotinus, M. myotis (26%) and Nyctalus leisleri (23%). In this study at a local scale, from oak to spruce vegetation stages, decreasing number of species with increasing altitude was found. Species dominance of the individual altitudinal levels was significantly different (15 species up to 600 m a.s.l., six species over 1100 m a.s.l.). The results indicated that the occurrence of some bat species, due to their ecological adaptations, is more or less characteristic for higher or lower altitudes of the Western Carphathians. The “lowland” species were considered to be mainly E. serotinus, Pipistrellus pipistrellus, N. noctula, N. leisleri and M. daubentonii. In higher elevations (more than 850 m), the presence of reproductive females was not found, of all but one, N. noctula, of the “lowland” species which are breeding in the area. The “mountain” species were considered to be E. nilssonii and Plecotus auritus. The general occurrence and reproduction of M. mystacinus and Barbastella barbastellus, was not limited by elevation.  相似文献   

15.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

16.
Niche divergence among closely related lineages can be informative on the ecological and evolutionary processes involved in differentiation, particularly in the case of cryptic species complexes. Here we compared phylogenetic relationships and niche similarity between pairs of lineages included in the Podarcis hispanicus complex to examine patterns of niche divergence and its role in the organization of current diversity patterns, as allopatric, parapatric, and sympatric lineages occur in the Western Mediterranean Basin. First, we used ecological niche models to characterize the realized climatic niche of each Podarcis hispanicus complex lineage based on topographic and climatic variables, to identify important variables, and to test for niche conservatism or divergence between pairs of lineages. Variables related to precipitation generally exhibited the highest contribution to niche models, highlighting the importance of rainfall levels in shaping distributions of Podarcis wall lizards. We found that most forms have significant differences in realized climatic niches that do not follow the pattern of mitochondrial divergence. These results lend support to the hypothesis that genetic divergence across Podarcis hispanicus complex most likely occurred in allopatric conditions, mostly with significant niche divergence. Competition after secondary contact is also suggested by the common occurrence of niche overlap between lineages that exhibit strictly parapatric distribution. The almost continuous distribution of Podarcis lizards in the study area appears to be a result of a combination of complementary suitable niches and competition, which seem two important mechanisms limiting geographic distributions and restricting the existence of extensive contact zones.  相似文献   

17.
The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, Virentes, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil‐calibrated phylogeny of Virentes using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA‐i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the Virentes to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for Virentes of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical–temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co‐occurrence may thus influence which niche axis plants diverge along.  相似文献   

18.
Identifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers. We used natural pulses of mast‐fruiting of American beech (Fagus grandifolia) to test whether optimal foraging or competition structure the dietary niche breadth and overlap between two congener rodent species (Peromyscus leucopus and P. maniculatus), both of which are generalist consumers. We reconstructed diets seasonally over a 2‐year period using stable isotope analysis (δ13C, δ15N) of hair and of potential dietary items and measured niche dynamics using standard ellipse area calculated within a Bayesian framework. Changes in niche breadth were generally consistent with predictions of optimal foraging theory, with both species consuming more beechnuts (a high‐quality food resource) and having a narrower niche breadth during masting seasons compared to nonmasting seasons when dietary niches expanded and more fungi (a low‐quality food source) were consumed. In contrast, changes in dietary niche overlap were consistent with competition theory, with higher diet overlap during masting seasons than during nonmasting seasons. Overall, dietary niche dynamics were closely tied to beech masting, underscoring that food availability influences competition. Diet plasticity and niche partitioning between the two Peromyscus species may reflect differences in foraging strategies, thereby reducing competition when food availability is low. Such dietary shifts may have important implications for changes in ecosystem function, including the dispersal of fungal spores.  相似文献   

19.
20.
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single‐nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise FST values of 0.45–0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号