首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sargassum is a cosmopolitan brown algal genus spanning the three ocean basins of the Atlantic, Pacific and Indian Oceans, inhabiting temperate, subtropical and tropical habitats. Sargassum has been postulated to have originated in the Oligocene epoch approximately 30 mya according to a broad phylogenetic analysis of brown macroalgae, but its diversification to become one of the most widespread and speciose macroalgal genera remains unclear. Here, we present a Bayesian molecular clock study, which analyzed data from the order Fucales of the brown algal crown radiation (BACR) group to reconstruct a time-calibrated phylogeny of the Sargassum clade. Our phylogeny included a total of 120 taxa with 99 Sargassum species sampled for three molecular markers – ITS-2, cox3 and rbcLS – calibrated with an unambiguous Sargassaceae fossil from between the lower and middle Miocene. The analysis revealed a much later origin of Sargassum than expected at about 6.7 mya, with the genus diversifying since approximately 4.3 mya. Current geographic distributions of Sargassum species were then analyzed in conjunction with the time-calibrated phylogeny using the dispersal-extinction-cladogenesis (DEC) model to estimate ancestral ranges of clades in the genus. Results strongly support origination of Sargassum in the Central Indo-Pacific (CIP) region with subsequent independent dispersal events into other marine realms. The longer history of diversification in the ancestral CIP range could explain the much greater diversity there relative to other marine areas today. Analyses of these dynamic processes, when fine-tuned to a higher spatial resolution, enable the identification of evolutionary hotspots and provide insights into long-term dispersal patterns.  相似文献   

2.
The Asian endemic dobsonfly genus Nevromus Rambur is revised. Six species of Nevromus are described or re‐described, and illustrated. Nevromus aspoeck Liu, Hayashi & Yang sp.n. , Nevromus austroindicus Liu & Viraktamath sp.n. and Nevromus gloriosoi Liu, Hayashi & Yang sp.n. are described from southernmost Yunnan of China and northern Thailand, southern India, and Borneo, respectively. A new combination Nevromus intimus (McLachlan) comb.n. is also identified. An interspecific phylogeny of Nevromus is reconstructed based on the adult morphological data, resulting in identification/recognition of two main clades, i.e. the mainland clade and the insular clade. Combining this phylogeny and the updated geographical distribution, an Indian origin and a historically widespread distribution in southern Eurasia is proposed for Nevromus. The deep divergence between the mainland and insular clades within Nevromus might have happened during the separation of Sundaland from Eurasia. The Tertiary orogenic events after the collision between the Indian subcontinent and Eurasia probably affected the speciation within the mainland clade of Nevromus, whereas the island formation of Borneo, Java and Sumatra shaped the fauna within the insular clade of this genus. The biogeographical pattern of Nevromus revealed in this study appears to have more general significance for understanding the faunal origin and diversification of the habitat‐specific or poorly dispersing insects from the Oriental realm.  相似文献   

3.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

4.
Extant clades may differ greatly in their species richness, suggesting differential rates of species diversification. Based on phylogenetic trees, it is possible to identify potential correlates of such differences. Here, we examine species diversification in a clade of 82 tropical African forest butterfly species (Cymothoe), together with its monotypic sister genus Harma. Our aim was to test whether the diversification of the HarmaCymothoe clade correlates with end‐Miocene global cooling and desiccation, or with Pleistocene habitat range oscillations, both postulated to have led to habitat fragmentation. We first generated a species‐level phylogenetic tree for Harma and Cymothoe, calibrated within an absolute time scale, and then identified temporal and phylogenetic shifts in species diversification. Finally, we assessed correlations between species diversification and reconstructed global temperatures. Results show that, after the divergence of Harma and Cymothoe in the Miocene (15 Mya), net species diversification was low during the first 7 Myr. Coinciding with the onset of diversification of Cymothoe around 7.5 Mya, there was a sharp and significant increase in diversification rate, suggesting a rapid radiation, and correlating with a reconstructed period of global cooling and desiccation in the late Miocene, rather than with Pleistocene oscillations. Our estimated age of 4 Myr for a clade of montane species corresponds well with the uplift of the Eastern Arc Mountains where they occur. We conclude that forest fragmentation caused by changing climate in the late Miocene as well as the Eastern Arc Mountain uplift are both likely to have promoted species diversification in the Harma–Cymothoe clade. Cymothoe colonized Madagascar much later than most other insect lineages and, consequently, had less time available for diversification on the island. We consider the diversification of Cymothoe to be a special case compared with other butterfly clades studied so far, both in terms of its abrupt diversification rate increase and its recent occurrence (7 Myr). It is clear that larval host plant shift(s) cannot explain the difference in diversification between Cymothoe and Harma; however, such a shift(s) may have triggered differential diversification rates within Cymothoe. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●● , ●●–●●.  相似文献   

5.
In this study, we infer the phylogeny of the recently described epiphytic fern genus Serpocaulon. Four regions of the plastid genome were sequenced for 68 samples, representing 31 of ca. 40 currently accepted species of this genus. The reconstructed phylogeny supports most of the previously proposed clades, but more exhaustive studies are needed to improve species delimitation in several terminal clades. A further objective of this study was to determine the utility of amplified fragment length polymorphism (AFLP) data to study the diversification of species complexes. Independent analyses of data sets based on chloroplast DNA sequences or AFLPs resulted in phylogenetic trees with similar topologies, but showed also some notable differences. We present an explicit hypothesis of the biogeographic history of Serpocaulon. All reconstructed phylogenies suggest an origin of this genus in the Bolivian–Brazilian region and indicate a major role of the Bolivian Andes as a stepping-stone in the colonization of northern regions of the Andes. The majority of the extant species diversity of this almost exclusively epiphytic fern clade is likely the result of an adaptive radiation that was triggered by the colonization of Andean mountain forest habitats (above 2,000 m). This is the first report of a Bolivian origin of fern diversification in Andean mountain habitats using phylogenetic evidence.  相似文献   

6.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   

7.
Aim We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum‐likelihood approaches. Dispersal–vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post‐dates the completion of the Panamanian isthmus.  相似文献   

8.
The unparalleled avian diversity of the Neotropics has long been argued to be in large part the evolutionary consequence of the incredible habitat diversity and rugged topography of the Andes mountains. Various scenarios have been proposed to explain how the Andean context could have generated lineage diversification (e.g. vicariant speciation or parapatric speciation across vertical ecological gradients), yet further study on Andean taxa is needed to reveal the relative importance of the different processes. Here we use mitochondrial and nuclear DNA sequences to derive the first phylogenetic hypothesis for Phrygilus (Sierra-Finches), one of the most species-rich genera of mainly Andean passerines. We find strong evidence that the genus is polyphyletic, comprising four distantly related clades with at least nine other genera interspersed between them (Acanthidops, Catamenia, Diglossa, Haplospiza, Idiopsar, Melanodera, Rowettia, Sicalis and Xenodacnis). These four Phrygilus clades coincide with groups previously established mainly on the basis of plumage characters, suggesting single evolutionary origins for each of these. We consider the history of diversification of each clade, analyzing the timing of splitting events, ancestral reconstruction of altitudinal ranges and current geographical distributions. Phrygilus species origins date mainly to the Pleistocene, with representatives diversifying within, out of, and into the Andes. Finally, we explored whether Phrygilus species, especially those with broad altitudinal and latitudinal Andean distributions, showed phylogeographic structure. Our best-sampled taxon (Phrygilus fruticeti) exhibited no clear pattern; however, we found deep genetic splits within other surveyed species, with Phrygilus unicolor being the most extreme case and deserving of further research.  相似文献   

9.
Species in the genus Bothrops s. l. are extraordinarily variable in ecology and geography, compared with other genera in the subfamily Crotalinae. In contrast to the trend of splitting large and variable groups into smaller, more ecologically and phenotypically cohesive genera, the genus Bothrops has remained speciose. In addition, previous phylogenetic analyses have found Bothrops to be paraphyletic with respect to the genus Bothriopsis. Taxonomic arguments exist for synonymizing Bothriopsis with Bothrops, and for splitting Bothrops into smaller genera, but the greatest hindrance to taxonomic revision has been incomplete phylogenetic information. We present a phylogeny of Bothrops, Bothriopsis, and Bothrocophias based on 85 characters of morphology and 2343 bp of four mitochondrial gene regions, and with significantly greater taxonomic coverage than previous studies. The combined data provide improved support over independent datasets, and support the existence of discrete species groups within Bothrops. The monophyly and distinctness of these groups warrant recognition at the generic level, and we propose a new taxonomic arrangement to reflect these findings. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 617–640.  相似文献   

10.
Phylogenetic relationships within the genus Muscisaxicola, a primarily Andean group of tyrant-flycatchers, were studied using complete sequences of the mitochondrial genes COII and ND3. Relationships among Muscisaxicola species were found to differ substantially from those of previous views, suggesting convergence in traditional avian taxonomic characters within the genus. The 11 species of large, gray, “typical” Muscisaxicola flycatchers (including M. grisea, newly restored to species status) formed a distinct clade, consisting of two major groups: a clade of 6 species breeding primarily in the central Andes and a clade of 5 species breeding primarily in the southern Andes. The other 2 species traditionally placed in this genus, M. fluviatilis, an Amazonian species, and M. maculirostris, were both rather divergent genetically from the typical species, although M. maculirostris may be the sister taxon to the typical clade. The patterns of sympatry exhibited by Muscisaxicola species in the high Andes appear to be the consequence of speciation and secondary contact within regions of the Andes, rather than a result of dispersal between regions. Diversification of the typical Muscisaxicola species appears to have occurred during the middle and late Pleistocene, suggesting generally that taxa of the high Andes and Patagonia may have been greatly influenced by mid-to-late Pleistocene events. There were likely several independent developments of migration within this genus, but migration is probably ancestral in the southern clade, with subsequent loss of migration in two taxa.  相似文献   

11.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

12.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

13.
Oryzomyini is the richest tribe among the Sigmodontine rodents, encompassing 32 living and extinct genera and including an increasing number of recently described species and genera. Some Oryzomyini are tetralophodont showing a reduction in the number of molar folds to four, while most taxa in this tribe retain the plesiomorphic pentalophodont state. We applied phylogenetic methods, molecular dating techniques and ancestral area analyses to members of an oryzomyini clade informally named ‘D’ in former studies and included related fossil tetralophodont forms. Based on 98 morphological characters and sequences of five gene fragments, we found that the tetralophodont condition is paraphyletic. Among living taxa, Pseudoryzomys is sister to Holochilus, and Lundomys is derived from a basal divergence. A clade formed by living Holochilus and the fossils Noronhomys and Carletonomys is sister to Holochilus primigenus, making Holochilus paraphyletic. Therefore, we describe a new genus that accommodates the fossil H. primigenus. Because trans‐Andean taxa currently share a common ancestor with taxa of cis‐Adean distribution, the northern Andes uplift may have worked as a postdispersal barrier. The tetralophodont lineages diverged during the Pliocene from a cis‐Andean ancestor, and the Great Plains in South America may have favoured the diversification of tetralophodont forms adapted to open habitats during the Pliocene.  相似文献   

14.
The monophyletic Morpho sulkowskyi butterfly group, endemic of Andean cloud forests, was studied to test the respective contributions of Mio‐Pliocene intense uplift period and Pleistocene glacial cycles on Andean biodiversity. We sampled nine taxa covering the whole geographical range of the group. Two mitochondrial and two nuclear genes were analysed using a Bayesian method. We established a dated phylogeny of the group using a relaxed clock method and a wide‐outgroup approach. To discriminate between two hypotheses, we used a biogeographical probabilistic method. Results suggest that the ancestor of the M. sulkowskyi group originated during the Middle–Late Miocene uplift of the Eastern Cordillera in northern Peru. Biogeographical inference suggests that the Msulkowskyi and Morpho lympharis clades diverged in the northern Peruvian Andes. The subsequent divergences, from the Late Miocene to the Late Pliocene, should have resulted from a dispersal towards the Northern Andes (M. sulkowskyi clade), after the closure of the West Andean Portal separating the Central and Northern Andes, and a southwards dispersal along the Peruvian and Bolivian Eastern Cordilleras (M. lympharis clade). Only a few divergences occurred at the very end of the Pliocene or during the Pleistocene, a period when the more recent uplifts interfered with Pleistocene glacial cycles.  相似文献   

15.
The Andes, the world's longest mountain chain, harbours great taxonomic and ecological diversity. Despite their young age, the tropical Andes are highly diverse due to recent geological uplift. Speciation either followed the orogeny closely or occurred after the Andean uplift, as a result of subsequent climatic changes. Different scenarios have been proposed to explain the diversification of high Andean taxa. The Melanoplinae grasshopper Ponderacris Ronderos & Cigliano is endemic to the eastern slopes of the Andes of Peru and Bolivia, mostly distributed between 1000 and 4000 m above sea level. Diversification in several montane habitats of Bolivia and Peru allows tests via cladistic analysis of distinct possible geographic modes of speciation. Eight species are recognized, with three described here as new with revised diagnostic morphological characters provided: Ponderacris carlcarbonelli sp.n., P. chulumaniensis sp.n. and P. amboroensis sp.n. Cladistic analyses of 15 species (8 ingroup and 7 outgroup) and 38 morphological characters, under equal and implied weighting, confirm the monophyly of Ponderacris. Characters from the external morphology and colour pattern provided less phylogenetic information than did the male abdominal terminalia and phallic complex. Species distributed in the Peruvian Andes constituted a monophyletic group, whereas those from the Bolivian Andes formed a basal paraphyletic grade. Dispersal–vicariance analysis resulted in one ancestral distribution reconstruction indicating that the most recent common ancestor was distributed in the Lower Montane Yungas of Bolivia. Eleven dispersal and one vicariant events are postulated, with a South‐to‐North speciation pattern coincident with progressive Andean uplift. Vicariance could relate to fragmentation of montane forest during the dry intervals of the late Cenozoic. From the Bolivian area, ancestral Peruvian Ponderacris may have dispersed northward, coinciding with the rise of the Andes. Ten of 11 dispersal events occurred at terminal taxa and are likely to be recent. However, diversification of Ponderacris cannot be explained solely by the South‐to‐North speciation hypothesis, but may also include both vicariance and dispersal across barriers influenced by Pleistocene climatic cycles.  相似文献   

16.
Sylvietta is a broadly distributed group of African species inhabiting a wide range of habitats and presents an interesting opportunity to investigate the historic mechanisms that have impacted the biogeography of African avian species. We collected sequence data from 50 individuals and used model‐based phylogenetic methods, molecular divergence estimates and ancestral area estimates to construct a time‐calibrated phylogeny and estimation of biogeographic history. We estimate a southern African origin for Sylvietta, with an initial divergence splitting the genus into two clades. The first consists of arid‐adapted species, with a southern African origin and subsequent diversification north into Ethiopia–Somalia. The second clade is estimated as having a Congolian forest origin with an eastward pattern of colonization and diversification as a result of Plio‐Pleistocene forest dynamics. Additionally, two members of the genus Sylvietta display interesting patterns of intraspecific diversification. Sylvietta rufescens is an arid‐adapted species inhabiting southern Africa, and we recover two subclades with a divergence dating to the Pleistocene, a unique pattern for avian species which may be explained via isolation in arid habitat fragments in the early Pleistocene. Second, Sylvietta virens, a species endemic to Afro‐tropical forests, is recovered with geographically structured genetic diversification across its broad range, an interesting result given that recent investigations of several avian forest species have found similar and substantial geographically structured genetic diversity relating to Plio‐Pleistocene forest fragmentation. Overall, Plio‐Pleistocene habitat cycling played a significant role in driving diversification in Sylvietta, and this investigation highlights the substantial impact of climate‐driven habitat dynamics on the history of sub‐Saharan species.  相似文献   

17.
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region.  相似文献   

18.
The uplift of the Andes was a major factor for plant diversification in South America and had significant effects on the climatic patterns at the continental scale. It was crucial for the formation of the arid environments in south-eastern and western South America. However, both the timing of the major stages of the Andean uplift and the onset of aridity in western South America remain controversial. In this paper we examine the hypothesis that the Andean South American groups of Heliotropium originated and diversified in response to Andean orogeny during the late Miocene and a the subsequent development of aridity. To this end, we estimate divergence times and likely biogeographical origins of the major clades in the phylogeny of Heliotropium, using both Bayesian and likelihood methods. Divergence times of all Andean clades in Heliotropium are estimated to be of late Miocene or Pliocene ages. At least three independent Andean diversification events can be recognized within Heliotropium. Timing of the diversification in the Andean lineages Heliotropium sects.Heliothamnus, Cochranea, Heliotrophytum, Hypsogenia, Plagiomeris, Platygyne clearly correspond to a rapid, late Miocene uplift of the Andes and a Pliocene development of arid environments in South America.  相似文献   

19.
Quintero, E., Ribas, C. C. & Cracraft, J. (2012). The Andean Hapalopsittaca parrots (Psittacidae, Aves): an example of montane‐tropical lowland vicariance. —Zoologica Scripta, 42, 28–43. We describe a phylogenetic and biogeographical pattern connecting high montane biotas to those of the lowlands, as exemplified by the exclusively montane parrot genus Hapalopsittaca and its lowland sister genus Pyrilia, both nested within Tavares et al.’s “amazons and allies” clade. As Hapalopsittaca is the only genus within the “amazons and allies” clade that is exclusively distributed in the Andes, the optimization leads to the inference that the ancestral distribution of the branch leading to Pyrilia + Hapalopsittaca was lowland. Museum specimens were examined to determine basal diagnosably distinct taxonomic units. Based on this analysis, mitochondrial sequences (cyt b and ND2 genes) from 17 individuals, mostly from toe pads, and representing all basal taxa within Hapalopsittaca, were obtained. A divergence‐dating analysis using both nuclear (RAG‐1) and mitochondrial (cyt b) genes was conducted to explore whether the uplift of the Andes coincides temporarily with the origin of this montane group, and thus might be causally linked to its origin. Molecular dating estimates the split between Hapalopsittaca and Pyrilia to have occurred between 6.6 and 8.0 Myr; thus, the timing of this highland/lowland disjunction is consistent with that of the final uplift of the Central Andes, supporting a hypothesis of vicariance due to Andean uplift. These results suggest that the taxonomic assembly of montane biotas may be, at least in part, explained by events of Earth history rather than by long‐distance dispersal and colonization. Diversification within Hapalopsittaca and the origin of current species are more recent in time and probably are related to Pleistocene climatic oscillations, as has been shown in other montane groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号