首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.  相似文献   

2.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

3.
Mountains host greater avian diversity than lowlands at the same latitude due to their greater diversity of habitats stratified along an elevation gradient. Here we test whether this greater ecological heterogeneity promotes sympatric speciation. We selected accentors (Prunellidae), an avian family associated with mountains of the Palearctic, as a model system. Accentors differ in their habitat/elevation preferences and south‐central Siberia and Himalayan regions each host 6 of the 13 species in the family. We used sequences of the mtDNA ND2 gene and the intron 9 of the Z chromosome specific ACO1 gene to reconstruct a complete species‐level phylogeny of Prunellidae. The tree based on joint analysis of both loci was used to reconstruct the family's biogeographic history and to date the diversification events. We also analyzed the relationship between the node age and sympatry, to determine the geographic mode of speciation in Prunellidae. Our data suggest a Miocene origin of Prunellidae in the Himalayan region. The major division between alpine species (subgenus Laiscopus) and species associated with shrubs (subgenus Prunella) and initial diversification events within the latter happened within the Himalayan region in the Miocene and Pliocene. Accentors colonized other parts of the Palearctic during the Pliocene‐Pleistocene transition. This spread across the Palearctic resulted in rapid diversification of accentors. With only a single exception dating to 0.91 Ma, lineages younger than 1.5 Ma are allopatric. In contrast, sympatry values for older nodes are >0. There was no relationship between node age and range symmetry. Allopatric speciation (not to include peripatric) is the predominant geographic mode of speciation in Prunellidae despite the favorable conditions for ecological diversification in the mountains and range overlaps among species.  相似文献   

4.
Montane areas host high levels of diversity and endemism, and these features are tied to habitat stratification along an elevational gradient. As such, montane areas are often thought of as model systems in which sympatric speciation can occur. To test this idea, we selected Phoenicurus redstarts, an avian genus with an extensive distribution across Eurasia, as well as Northwest Africa; nine of the 14 species in the genus have distributions which include the Himalayas. We used sequences of the mtDNA ND2 and cytochrome-b genes and intron 9 of the Z chromosome specific ACO1 gene to reconstruct a phylogeny of the genus. The resulting trees were used to reconstruct a biogeographic history of Phoenicurus, and to date diversification events. We also analysed the relationship between node age and sympatry to determine the geographic mode of speciation in the genus. Our data suggest a very late Miocene, Himalayan origin for Phoenicurus. Diversification and colonization of other parts of Eurasia, as well as Northwest Africa, continued through the Pleistocene, with a rapid pulse of speciation in the late Pliocene. Allopatric speciation was the dominant mode of speciation in Phoenicurus, despite extensive distributional overlaps in the Himalayas where ecological conditions are amenable to speciation in sympatry. Our results, along with several other studies, suggest an emerging pattern where the Himalayas served as a source area for montane specialist avian lineages that subsequently colonized other Palaearctic regions.  相似文献   

5.
In this study we reconstruct phylogenies for deep sea amphipods from the North Atlantic in order to test hypotheses about the evolutionary mechanisms driving speciation in the deep sea. We sequenced five genes for specimens representing 21 families. Phylogenetic analyses showed incongruence between the molecular data and morphological taxonomy, with some morphologically distinct taxa showing close molecular similarity. Approximate dating of nodes based on available calibration suggested adaptation to the deep sea around the Cretaceous-Palaeogene boundary, with three identified lineages within the deep-sea radiation dating to the Eocene–Oligocene transition. Two of those lineages contained species currently classified in multiple families. We reconstructed ancestral nodes based on the mouthpart characters that define trophic guilds (also used to establish the current taxonomy), and show a consistent transition at the earliest node defining the deep-sea lineage, together with increasing diversification at more recent nodes within the deep-sea lineage. The data suggest that the divergence of species was adaptive, with successive diversification from a non-scavenging ancestor to ‘opportunistic’, ‘obligate’ and ‘specialised’ scavengers. We propose that the North Atlantic species studied provide a strong case for adaptive evolution promoted by ecological opportunity in the deep sea.  相似文献   

6.
The temporal origins of the extraordinary biodiversity of the Neotropical region are highly debated. Recent empirical work has found support for alternative models on the tempo of speciation in Neotropical species further fuelling the debate. However, relationships within many Neotropical lineages are poorly understood, and it is unclear how this uncertainty impacts inferences on the evolution of taxa in the region. We examined the robustness of diversification patterns in the avian genus Forpus by testing whether the use of different units of biodiversity (i.e. biological species and statistically inferred species) impacted diversification rates and inferences regarding important biogeographic breaks in the genus. We found that the best‐fit model of diversification for the biological species data set was a declining rate of diversification; whereas a model of constant diversification was the best‐fit model for statistically inferred species or subspecies. Moreover, the relative importance of different landscape features in delimiting genetic structure across the landscape varied across data sets with differing units of biodiversity. Patterns based on divergence times among biological species indicated old speciation events across major geographic and river barriers. In contrast, data sets more inclusive of the diversity in Forpus illustrate the role of both old divergence across major landscape features and more recent divergences that are possibly attributed to Pleistocene climatic changes. Overall, these results indicate that conflicting models on the temporal origins of Neotropical birds may be attributable to sampling biases.  相似文献   

7.
This paper summarizes the results of an initial effort to reconstruct the speciational history of cave spiders (Nesticus) from the southern Appalachian Mountains of eastern North America. The Appalachian Nesticus fauna includes a large series of about 30 species distributed across islandlike cave and montane habitats. Many of the species are geographically restricted; all of the species are found in allopatry. Observed patterns of morphological variation and biogeographic evidence suggest that species diversification in this lineage may have occurred recently, perhaps in response to Pleistocene climatic fluctuations. To address questions about the spatial and temporal dynamics of Nesticus speciation, while accounting for potential phylogenetic difficulties, I have gathered nuclear and mitochondrial DNA sequences for a sample of individuals from 81 populations representing 28 Nesticus species. Analyses of these data indicate that considerable genetic divergence exists within and among currently recognized morphological species. Consistent with relatively deep species divergences, most of which likely predate the Pleistocene, is a prevailing pattern of phylogenetic concordance between taxonomic species and monophyletic gene tree lineages. The few deviations from monophyly detected can be tentatively attributed to a peripatric mode of speciation. Although species limits as inferred by the molecular data are generally concordant with patterns of morphological continuity and discontinuity in genitalia, there is evidence to suggest that cryptic phylogenetic lineages exist within some morphologically continuous units. This observation, in combination with the general depth of species lineages, makes any argument about rapid evolution in Nesticus genitalic characteristics unnecessary.  相似文献   

8.
Renaut S 《Molecular ecology》2011,20(7):1320-1321
Natural hybridization between closely related taxa is frequent in many organismal groups, yet it has long been perceived as a force preventing diversification and speciation, especially so in animals. In recent years, growing evidence in favour of hybridization facilitating adaptive divergence has accumulated ( Mallet 2007 ; Mavárez & Linares 2008 ; Nolte & Tautz 2010 ). Homoploid hybrid speciation (the formation of hybrid lineages without changes in chromosome number) occurs when distinct species come into contact, hybridize, and at least in part of their range, produce hybrid swarms. If the hybrid genotypes can then colonize areas of the adaptive landscape inaccessible to ancestral species, they may eventually form new distinct lineages, reproductively isolated from their ancestors. Invasive sculpins (Cottus sp.) are one of a few good examples of homoploid hybrid speciation in animals. In this issue, Stemshorn et al. (2011) identified three distinct hybrid lineages, which have emerged out of a secondary contact situation of Cottus rhenanus and Cottus perifretum. Hybrids have recently invaded large river habitats unsuitable to ancestral species. Through the use of genetic mapping, the authors established that contrary to expectations, chromosomal rearrangements were not apparent in the hybrid lineages. In addition, different population genetic models were tested and the results suggest that contemporary gene flow from ancestral species represents an important component of the system. As such, recent and ongoing hybridization appears to be promoting the appearance of phenotypes adapted to novel environments. The examination of partially isolated lineages such as invasive hybrid sculpins should permit to identify early adaptive genetic changes before they become confounded by differences arising once speciation is complete.  相似文献   

9.
A central problem in evolutionary biology is identifying factors that promote the evolution of reproductive isolation. Among mosses, biogeographic evidence indicates that the potential for migration is great, suggesting that biological factors other than geographic isolation may be critical for speciation in this group. The moss Physcomitrella patens (Funariaceae) has long been used as a model for interspecies hybridization and has recently emerged as an important model system for comparative genomics. We report genealogical analyses of six loci from several populations of P. patens and related species in the genus Physcomitrium. These results unambiguously indicate that the so-called genus Physcomitrella arose at least three times from distinct ancestors within the genus Physcomitrium. In spite of the evidence for natural hybridization in the Physcomitrella–Physcomitrium complex, genealogical and experimental hybridization data indicate that the taxonomically defined species are reproductively isolated. However, these analyses suggest that Physcomitrium eurystomum was formed from a hybridization event between two early diverging lineages in the complex, and that the ancestral population size of these lineages was much smaller than the current population sizes. We discuss these findings in the context of the inferred mating system in the Physcomitrella–Physcomitrium complex and patterns of speciation and diversification.  相似文献   

10.
Ecological requirements and environmental conditions can influence diversification across temporal and spatial scales. Understanding the role of ecological niche evolution under phylogenetic contexts provides insights on speciation mechanisms and possible responses to future climatic change. Large‐scale phyloclimatic studies on the megadiverse Neotropics, where biomes with contrasting vegetation types occur in narrow contact, are rare. We integrate ecological and biogeographic data with phylogenetic comparative methods, to investigate the relative roles of biogeographic events and niche divergence and conservatism on the diversification of the lizard genus Kentropyx Spix, 1825 (Squamata: Teiidae), distributed in South American rainforests and savannas. Using five molecular markers, we estimated a dated species tree, which recovered three clades coincident with previously proposed species groups diverging during the mid‐Miocene. Biogeography reconstruction indicates a role of successive dispersal events from an ancestral range in the Brazilian Shield and western Amazonia. Ancestral reconstruction of climatic tolerances and niche overlap metrics indicates a trend of conservatism during the diversification of groups from the Amazon Basin and Guiana Shield, and a strong signal of niche divergence in the Brazilian Shield savannas. Our results suggest that climatic‐driven divergence at dynamic forest‐savanna borders might have resulted in adaptation to new environmental niches, promoting habitat shifts and shaping speciation patterns of Neotropical lizards. Dispersal and ecological divergence could have a more important role in Neotropical diversification than previously thought.  相似文献   

11.
Titi monkeys, subfamily Callicebinae, are a diverse, species‐rich group of Neotropical primates with an extensive range across South America. Their distribution in space and time makes them an interesting primate model for addressing questions of Neotropical historical biogeography. Our aim was to reconstruct the biogeographic history of Callicebinae to better understand their diversification patterns and the history of their colonisation of South America since the late Miocene. We reconstructed a time‐calibrated phylogeny of 19 titi species under Bayesian inference using two mitochondrial and 11 nuclear loci. Species were assigned across eight Neotropical areas of endemism, and statistical biogeographic methods implemented in BioGeoBEARS were employed to estimate ancestral areas using 12 biogeographic models. Our results indicate that the most recent common ancestor to extant titi monkeys was widespread from the present‐day Andean foothills in the Colombian Amazon, through the wet and dry savannas of Bolivia and Brazil, to the southern Atlantic forest of eastern Brazil. Genus‐level divergences were characterised by vicariance of ancestral range in the late Miocene. Species‐level diversification in Cheracebus and the Plecturocebus moloch group occurred as they spread across the Amazon in the Pleistocene and were largely characterised by a sequential, long‐distance “island‐hopping” dispersal model of speciation from a narrow area of origin through jump dispersal across rivers. This study comprises the first large‐scale investigation of the evolutionary history of titi monkeys in the context of Amazonian and South American historical biogeography and sheds light on the processes that generated the great diversity found among Callicebinae.  相似文献   

12.
Colossendeis megalonyx Hoek, 1881 is a widespread and abundant pycnogonid in the Southern Ocean which has also been reported from the South Atlantic and South Pacific Oceans. Its strictly benthic lifestyle is expected to promote genetic differentiation among populations and ultimately facilitate speciation. On the other hand, the reported eurybathy and unknown larval stages of this species may allow Colossendeis megalonyx to maintain genetic continuity between isolated shallow-water habitats by active dispersal through the deep sea or by passive rafting on floating substrates. Thus, it remains unknown whether and to which extent geographically separated populations of Colossendeis megalonyx maintain gene flow in the Southern Ocean. We sampled 96 specimens of Colossendeis megalonyx from three stations in the Atlantic Sector of the Southern Ocean and one station from the South American continental shelf (Burdwood Bank). The genetic structure of nominal Colossendeis megalonyx as well as its phylogenetic position within the genus Colossendeis were assessed using a fragment of the cytochrome c oxidase subunit 1 gene. Our data strongly support that nominal Colossendeis megalonyx consists of at least five cryptic and one pseudocryptic mitochondrial lineages, four of which appear to be geographically restricted. Two lineages occurred at locations separated by more than 1,000 km in the Antarctic, thus indicating high levels of gene flow or recent colonization. No haplotype sharing across the Polar Frontal Zone was observed. Our results strongly suggest that cryptic speciation occurred within the genus Colossendeis. The wide biogeographic distribution range of Colossendeis megalonyx and perhaps that of other Antarctic pycnogonids should therefore be regarded with caution.  相似文献   

13.
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega‐phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species‐rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the ‘generalized diversification rate’ hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.  相似文献   

14.
Past climatic shifts have played a major role in generating and shaping biodiversity. Quaternary glacial cycles are the better known examples of dramatic climatic changes endured by ecosystems in temperate regions. Although still a matter of debate, some authors suggest that glaciations promoted speciation. Here we investigate the effect of past climatic changes on the diversification of the ground‐dwelling spider genus Harpactocrates, distributed across the major mountain ranges of the western Mediterranean. Concatenated and species‐tree analyses of multiple mitochondrial and nuclear loci, combined with the use of fossil and biogeographic calibration points, reveal a Miocene origin of most nominal species, but also unravel several cryptic lineages tracing back to the Pleistocene. We hypothesize that the Miocene Climatic Transition triggered major extinction events in the genus but also promoted its subsequent diversification. Under this scenario, the Iberian mountains acted as an island‐like system, providing shelter to Harpactocrates lineages during the climate shifts and favouring isolation between mountain ranges. Quaternary glacial cycles contributed further to the diversification of the group by isolating lineages in peripheral refugia within mountain ranges. In addition, we recovered some unique biogeographic patterns, such as the colonization of the Alps and the Apennines from the Iberian Peninsula.  相似文献   

15.
The diversification of Indo-Pacific marine fauna has long captivated the attention of evolutionary biologists. Previous studies have mainly focused on coral reef or shallow water-associated taxa. Here, we present the first attempt to reconstruct the evolutionary history--phylogeny, diversification, and biogeography--of a deep-water lineage. We sequenced the molecular markers 16S, COI, ND1, 18S, and 28S for nearly 80% of the nominal species of the squat lobster genus Paramunida. Analyses of the molecular phylogeny revealed an accelerated diversification in the late Oligocene-Miocene followed by a slowdown in the rate of lineage accumulation over time. A parametric biogeographical reconstruction showed the importance of the southwest Pacific area, specifically the island arc of Fiji, Tonga, Vanuatu, Wallis, and Futuna, for diversification of squat lobsters, probably associated with the global warming, high tectonic activity, and changes in oceanic currents that took place in this region during the Oligocene-Miocene period. These results add strong evidence to the hypothesis that the Neogene was a period of major diversification for marine organisms in both shallow and deep waters.  相似文献   

16.
Haplochromine cichlids form the most species-rich lineage of cichlid fishes that both colonized almost all river systems in Africa and radiated to species flocks in several East African lakes. The enormous diversity of lakes is contrasted by a relatively poor albeit biogeographically clearly structured species diversity in rivers. The present study analyzed the genetic structure and phylogeographic history of species and populations of the genus Pseudocrenilabrus in Zambian rivers that span two major African drainage systems, the Congo- and the Zambezi-system. The mtDNA phylogeny identifies four major lineages, three of which occur in the Congo-system and one in the Zambezi system. Two of the Congo-clades (Lake Mweru and Lunzua River) comprise distinct albeit yet undescribed species, while the fish of the third Congo-drainage clade (Chambeshi River and Bangweulu swamps), together with the fish of the Zambezi clade (Zambezi and Kafue River) are assigned to Pseudocrenilabrus philander. Concerning the intraspecific genetic diversity observed in the sampled rivers, most populations are highly uniform in comparison to lacustrine haplochromines, suggesting severe founder effects and/or bottlenecking during their history. Two bursts of diversification are reflected in the structure of the linearized tree. The first locates at about 3.9% mean sequence divergence and points to an almost simultaneous colonization of the sampled river systems. Subsequent regional diversification (with about 1% mean sequence divergence) occurred contemporaneously within the Kafue River and the Zambezi River. The clear-cut genetic biogeographic structure points to the dominance of geographic speciation in this lineage of riverine cichlid fishes, contrasting the importance of in situ diversification observed in lake cichlids.  相似文献   

17.
The Tethys Ocean existed between the continents of Gondwana and Laurasia from the Triassic to the Pliocene. Analyses of multiple biogeographic and phylogenetic histories reveal that the subsequent breakup of the Tethys greatly influenced the distributions of many species. The ancestral Tethyan realm broke into five biogeographic provinces, including the present‐day East Pacific, West Atlantic, East Atlantic, Mediterranean Sea, and Indo‐West Pacific. Palaeogeographic maps illustrate the Mesozoic Atlantic opening, the Cenozoic closure of the Tethys, the Messinian Salinity Crisis, the mid‐Miocene closure of the Central American Seaway, and Quaternary geological changes. Further, we consider Cenozoic sea‐level changes and the formation of freshwater habitats. These reconstructions allow assessment of patterns of aquatic diversification for marine and freshwater animals, and comparison of vicariance and dispersal processes. Estimated divergence times indicate that fragmentation of the Tethys was responsible for the vicariant speciation of aquatic animals because these dates are consistent with associated tectonic events. The opening of the Atlantic Ocean during the Cretaceous is responsible for the earliest isolation between the West and East Atlantic. The mid‐Miocene closure of the Tethys, which blocked global equatorial currents, appears to have isolated the Atlantic/Mediterranean Sea and Indo‐West Pacific. Finally, formation of the Isthmus of Panama isolated East Pacific and West Atlantic marine organisms. Dispersals related to the Messinian Salinity Crisis and Quaternary sea‐level changes influenced population structuring. Tethyan changes affected marine habitats, created new freshwater habitats, inland caves and ancient lakes along the Alps and Himalayas, and influenced anchialine caves at the edge of the ancient sea. The extensive new habitats provided opportunities for colonisation and rapid diversification. Future work should focus on testing the biological impact of the series of Tethyan changes.  相似文献   

18.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

19.
The Munidopsidae, one of three squat lobster families in the Galatheoidea, contains the deepest dwelling squat lobsters, with some occurring at abyssal depths. Munidopsids were formerly divided into two subfamilies: Shinkaiinae, for the unusual hydrothermal vent genus Shinkaia; and Munidopsinae for remaining taxa. Four munidopsid genera are currently recognised (Shinkaia, Leiogalathea, Galacantha and Munidopsis) but the largest genus, Munidopsis, is highly diverse morphologically, with multiple genera or subgenera currently in its synonymy. Phylogenetic studies of galatheoids focussed on high level relationships indicate that Leiogalathea is sister to other munidopsids, but the position of Shinkaia with respect to Munidopsis and Galacantha is unclear, as is the reciprocal monophyly of the latter two genera. Phylogenetic analyses of the Munidopsidae based on mitochondrial 16S and COI sequences, sampling all current genera (including the majority of the formerly recognised subgenera), indicate that the generic and former subfamily classifications do not reflect the phylogeny. Shinkaia and Galacantha clades are nested within Munidopsis rendering the genus paraphyletic and the bi-subfamily classification phylogenetically invalid. Many of the Munidopsis clades recovered, however, correspond well to formerly recognised genera or subgenera, indicating good prospects for a natural subdivision of Munidopsis.  相似文献   

20.
It was Darwin that noted the large intraspecific diversity of the goose barnacle Lepas Linnaeus, 1758 and thought about distinct regional varieties. Today, biogeographic compartmentation is known from marine species, but data from globally occurring species remain scarce. We analysed inter‐ and intraspecific divergence within the epipelagic rafter Lepas from tropical and temperate oceans by means of two mitochondrial and one nuclear DNA marker. Besides phylogenetic relations, we resolved biogeography and controlling factors. Inhabiting the Southern Hemisphere, Lepas australis Darwin, 1851 shows separate populations from coastal Chile and from circum‐Antarctic waters, most probably related to temperature differences in the current systems. The cosmopolitan Lepas anatifera Linnaeus, 1758 displays four regional subgroups (coastal Chile, Northeast Pacific/Oregon, the Southern Hemisphere Indopacific, and the Atlantic), and a global group, which might be an ancestral stem group. The differentiation reflects vicariance effects rooted in geological history: the closure of the Neogene Tethys in the Middle East and at the Panama Isthmus, the installation of the cool Benguela Current, differing Pleistocene currents and temperatures, and modern current systems. The extreme ecological generalists Lepas anserifera Linnaeus, 1767 and Lepas pectinata Spengler, 1793 are not differentiated, and might represent true global species. In conclusion, compartmentation of the oceans acts at the species level according to ecospace limits. For Lepas, the multitude of barriers favours allopatric speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号