首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships of the monocot family Hypoxidaceae (Asparagales), which occurs mainly in the Southern Hemisphere, were reconstructed using four plastid DNA regions (rbcL, trnL intron, trnL-F intergenic spacer, and trnS-G intergenic spacer) for 56 ingroup taxa including all currently accepted genera and seven species of the closely related families Asteliaceae, Blandfordiaceae, and Lanariaceae. Data were analyzed by applying parsimony, maximum likelihood and Bayesian methods. The intergenic spacer trnS-G--only rarely used in monocot research--contributed a substantial number of potentially parsimony informative characters. Hypoxidaceae consist of three well-supported major clades, but their interrelationships remain unresolved. Our data indicate that in the Pauridia clade one long-distance dispersal event occurred from southern Africa to Australia. Long-distance dispersal scenarios may also be likely for the current distribution of Hypoxis, which occurs on four continents. In the Curculigo clade, the present distribution of Curculigo s.s. on four continents could support a Gondwanan origin, but the level of divergence is too low for this hypothesis to be likely. The main clades correspond well with some floral characters, habit and palynological data, whereas chromosomal data exhibit plasticity and probably result from polyploidization and subsequent dysploidy and/or aneuploidy. Evolutionary flexibility is also suggested by the number of reported pollination syndromes: melittophily, myophily, sapromyophily, and cantharophily. Based on our phylogenetic results, we suggest cautious nomenclatural reorganization to generate monophyly at the generic level.  相似文献   

2.
The persistent finding of clades endemic to the southern continents (Afrotheria and Xenarthra) near the base of the placental mammal tree has led molecular phylogeneticists to suggest an origin of Placentalia, the crown group of Eutheria, somewhere in the southern continents. Basal splits within the Placentalia have then been associated with vicariance due to the breakup of Gondwana. Southern-origin scenarios suffer from several problems. First, the place of origin of Placentalia cannot be reconstructed using phylogenetic reasoning without reference to outgroups. When available outgroups are considered, a Laurasian origin is most parsimonious. Second, a model of pure vicariance would require that basal placental splits occurred not with the breakup of Gondwana, but of Pangea in the Late Triassic—Early Jurassic. This event long preceded even the oldest molecular divergence estimates for the Placentalia and was coeval only with the earliest mammals in the fossil record. Third, a problem with the number of dispersal events that would be required emerges under different southern-origin scenarios. In considering the geographic distribution of the major placental clades at their first appearance (mostly Early Cenozoic), it becomes clear that a Laurasian center of origin would require fewer dispersal events. Southern-origin models would require at least twice the number of dispersal events in comparison with a model of Laurasian origins. This number of required dispersal events increases if extinct groups of placental mammals are also considered. Results are similar assuming a morphology-based phylogeny. These facts, along with earlier findings speaking against a major placental radiation deep in the Cretaceous without leaving fossil evidence, suggest an origin of Placentalia somewhere in Laurasia with few supraordinal splits occurring before the last 5–10 million years of the Cretaceous.  相似文献   

3.
Phylogenetic relationships and biogeography of the genus Cerastium were studied using sequences of three noncoding plastid DNA regions (trnL intron, trnL-trnF spacer, and psbA-trnH spacer). A total of 57 Cerastium taxa was analyzed using two species of the putative sister genus Stellaria as outgroups. Maximum parsimony analyses identified four clades that largely corresponded to previously recognized infrageneric groups. The results suggest an Old World origin and at least two migration events into North America from the Old World. The first event possibly took place across the Bering land bridge during the Miocene. Subsequent colonization of South America occurred after the North and South American continents joined during the Pliocene. A more recent migration event into North America probably across the northern Atlantic took place during the Quaternary, resulting in the current circumpolar distribution of the Arctic species. Molecular clock dating of major biogeographic events was internally consistent on the phylogenetic trees. The arctic high-polyploid species form a polytomy together with some boreal and temperate species of the C. tomentosum group and the C. arvense group. Lack of genetic variation among the arctic species probably indicates a recent origin. The annual life form is shown to be of polyphyletic origin.  相似文献   

4.
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.  相似文献   

5.
A new species of the insect order Zoraptera, Zorotypus pusillus, sp. n., is described and illustrated based on two ill‐preserved specimens in mid‐Cretaceous amber from the Hukawng Valley in northern Myanmar. Compared with known extinct zorapterans, the new species possesses eight‐segmented antennae and can be readily distinguished from all other extinct and recent members of the order in the presence of a shallow groove connecting two antennal sockets and by unique spination of the metafemur and metatibia. The earliest known suspicious mating behavior of Zoraptera, the intromittent organ of the fossil zorapterans, the egg, and the earliest known basal plate of the male genitalia are briefly discussed. The genitalia of new species are used as an intromittent organ in the majority of mating patterns among living zorapterans. The mating patterns (a copula is performed by males and females) of the most extant species have been present since at least the mid‐Cretaceous. A shared similar aedeagal structure in the new species and in the most extant species suggests an analogous mating behavior.  相似文献   

6.
The question of the origins of the dog has been much debated. The dog is descended from the wolf that at the end of the last glaciation (the archaeologically hypothesized period of dog domestication) was one of the most widespread among Holarctic mammals. Scenarios provided by genetic studies range from multiple dog-founding events to a single origin in East Asia. The earliest fossil dogs, dated approximately 17-12,000 radiocarbon ((14)C) years ago (YA), were found in Europe and in the Middle East. Ancient DNA (a-DNA) evidence could contribute to the identification of dog-founder wolf populations. To gain insight into the relationships between ancient European wolves and dogs we analyzed a 262-bp mitochondrial DNA control region fragment retrieved from five prehistoric Italian canids ranging in age from approximately 15,000 to approximately 3,000 (14)C YA. These canids were compared to a worldwide sample of 547 purebred dogs and 341 wolves. The ancient sequences were highly diverse and joined the three major clades of extant dog sequences. Phylogenetic investigations highlighted relationships between the ancient sequences and geographically widespread extant dog matrilines and between the ancient sequences and extant wolf matrilines of mainly East European origin. The results provide a-DNA support for the involvement of European wolves in the origins of the three major dog clades. Genetic data also suggest multiple independent domestication events. East European wolves may still reflect the genetic variation of ancient dog-founder populations.  相似文献   

7.
The significance of moulting in Ecdysozoan evolution   总被引:2,自引:0,他引:2  
SUMMARY Three major bilaterian clades first appear in the Early Cambrian fossil record: Deuterostomia, Lophotrochozoa, and Ecdysozoa. The taxa placed in Ecdysozoa are characterized by a moulting habit, unknown in the other major clades. The origin and consequences of moulting are of fundamental importance to the history of the ecdysozoan clade, chiefly because moulting precludes motile ectodermal cilia. Moulting may have originated as an adaptation to permit the enlargement, during growth, of secreted cuticular spines, flanges, and other structures used as ancillary locomotory devices. A combination of phylogenetic and fossil evidence suggests that the early members of these clades were small vermiform paracoelomates that likely lacked indirect-developing planktotrophic larvae. Thus, the evolution of planktotrophic larvae may have been independently achieved at least three times within Bilateria. The nonmoulting clades evolved larvae that swim and feed via ciliated tufts and bands, presumably intercalating these forms within their early developmental systems. Within Ecdysozoa, feeding larvae lacked ciliary feeding tracts and evolved by modification of early instars, employing limbs or setae to generate feeding currents. The setting aside during larval life of cells that give rise to adult features is probably an adaptation associated with metamorphosis.  相似文献   

8.
Hfq, a bacterial RNA-binding protein, was recently shown to contain the Sm1 motif, a characteristic of Sm and LSm proteins that function in RNA processing events in archaea and eukaryotes. In this report, comparative structural modeling was used to predict a three-dimensional structure of the Hfq core sequence. The predicted structure aligns with most major features of the Methanobacterium thermoautotrophicum LSm protein structure. Conserved residues in Hfq are positioned at the same structural locations responsible for subunit assembly and RNA interaction in Sm proteins. A highly conserved portion of Hfq assumes a structural fold similar to the Sm2 motif of Sm proteins. The evolution of the Hfq protein was explored by conducting a BLAST search of microbial genomes followed by phylogenetic analysis. Approximately half of the 140 complete or nearly complete genomes examined contain at least one gene coding for Hfq. The presence or absence of Hfq closely followed major bacterial clades. It is absent from high-level clades and present in the ancient Thermotogales-Aquificales clade and all proteobacteria except for those that have undergone major reduction in genome size. Residues at three positions in Hfq form signatures for the beta/gamma proteobacteria, alpha proteobacteria and low GC Gram-positive bacteria groups.  相似文献   

9.
Theories on the evolution and maintenance of sex are challenged by the existence of ancient parthenogenetic lineages such as bdelloid rotifers and darwinulid ostracods. It has been proposed that several parthenogenetic and speciose taxa of oribatid mites (Acari) also have an ancient origin. We used nucleotide sequences of the mitochondrial gene cytochrome oxidase I to estimate the age of the parthenogenetic oribatid mite species Platynothrus peltifer. Sixty-five specimens from 16 sites in North America, Europe and Asia were analysed. Seven major clades were identified. Within-clade genetic distances were below 2 % similar to the total intraspecific genetic diversity of most organisms. However, distances between clades averaged 56 % with a maximum of 125 %. We conclude that P. peltifer, as it is currently conceived, has existed for perhaps 100 million years, has an extant distribution that results from continental drift rather than dispersal and was subject to several cryptic speciations.  相似文献   

10.
We examined phylogeographic relationships in the cosmopolitan polypore fungus Ganoderma applanatum and allies, and conservatively infer a possible age of origin for these fungi. Results indicate that it is very unlikely that members of this species complex diversified before the break-up of Gondwana from Laurasia ca 120 M years ago, and also before the final separation of the Gondwanan landmasses from each other that was achieved about 66 M years ago. An earliest possible age of origin of 30 M years was estimated from nucleotide substitution rates in the 18S rDNA gene. Phylogenetic reconstruction of a worldwide sampling of ITS rDNA sequences reveals at least eight distinct clades that are strongly correlated with the geographic origin of the strains, and also correspond to mating groups. These include one Southern Hemisphere clade, one Southern Hemisphere–Eastern Asia clade, two temperate Northern Hemisphere clades, three Asian clades, and one neotropical clade. Geographically distant collections from the Southern Hemisphere shared identical ITS haplotypes, and an ITS recombinant was noted. Nested clade analysis of a parsimony network among isolates of the Southern Hemisphere clade indicated restricted gene flow with isolation-by-distance among the New Zealand, Australia–Tasmania, Chile–Argentine, and South Africa populations, suggesting episodic events of long-distance dispersal within the Southern Hemisphere. This study indicates that dispersal bias plays a more important role than generally admitted to explain the Southern Hemisphere distribution of many taxa, at least for saprobic fungi.  相似文献   

11.
Biogeography and divergence times in the mulberry family (Moraceae)   总被引:3,自引:0,他引:3  
The biogeographical history of the mulberry family (Moraceae) was investigated using phylogenetic inferences from nuclear and chloroplast DNA, molecular dating with multiple fossil calibrations, and independent geological evidence. The Moraceae are centered in the tropics which has invited the hypothesis that the family has Gondwanan origins and extant distribution is the result of vicariance due to the break-up of Gondwana. However, the cosmopolitan distribution of Moraceae suggests a more complicated biogeographical history. The timing and location of Moraceae diversification also bears on the origin of the fig pollination mutualism, a model for the study of coevolution and specialization. Recent molecular dating of pollinating fig wasps suggested that an ancient Gondwanan origin coupled with vicariance and dispersal could account for the present day distribution of the mutualism. Here, we provide the first assessment of this hypothesis based on dating of figs and their relatives. Minimum age estimates suggest that the Moraceae had diversified by at least the mid-Cretaceous and major clades including the figs may have radiated during the Tertiary after the break-up of Gondwanaland. Molecular evidence together with Eurasian fossils suggest that the early diversification of Moraceae in Eurasia and subsequent migration into the southern hemisphere is at least as plausible as the Gondwanan hypothesis. These findings invite a reevaluation of the biogeography of fig pollination and highlight the need for incorporating multiple sources of evidence in biogeographical reconstructions.  相似文献   

12.
A heteroduplex mobility assay was used to identify variants of varicella-zoster virus circulating in the United Kingdom and elsewhere. Within the United Kingdom, 58 segregating sites were found out of the 23,266 examined (0.25%), and nucleotide diversity was estimated to be 0.00063. These are an order of magnitude smaller than comparable estimates from herpes simplex virus type 1. Sixteen substitutions were nonsynonymous, the majority of which were clustered within surface-expressed proteins. Extensive genetic correlation between widely spaced sites indicated that recombination has been rare. Phylogenetic analysis of varicella-zoster viruses from four continents distinguished at least three major genetic clades. Most geographical regions contained only one of these three strains, apart from the United Kingdom and Brazil, where two or more strains were found. There was minimal genetic differentiation (one or fewer substitutions in 1,895 bases surveyed) between the samples collected from Africa (Guinea Bissau, Zambia) and the Indian subcontinent (Bangladesh, South India), suggesting recent rapid spread and/or low mutation rates. The geographic pattern of strain distribution would favor a major influence of the former. The genetic uniformity of most virus populations makes recombination difficult to detect. However, at least one probable recombinant between two of the major strains was found among the samples originating from Brazil, where mixtures of genotypes co-occur.  相似文献   

13.
The uneven distribution of diversity is a conspicuous phenomenon across the tree of life. Ecological opportunity is a prominent catalyst of adaptive radiation and therefore may alter patterns of diversification. We evaluated the distribution of shifts in diversification rates across the cichlid phylogeny and the distribution of major clades across phylogenetic space. We also tested if ecological opportunity influenced these patterns. Colonization‐associated ecological opportunity altered the tempo and mode of diversification during the adaptive radiation of cichlid fishes. Clades that arose following colonization events diversified faster than other clades. Speciation rate shifts were nonrandomly distributed across the phylogeny such that they were disproportionally concentrated around nodes that corresponded with colonization events (i.e., of continents, river basins, or lakes). Young clades tend to expand faster than older clades; however, colonization‐associated ecological opportunity accentuated this pattern. There was an interaction between clade age and ecological opportunity that explained the trajectory of clades through phylogenetic space over time. Our results indicate that ecological opportunities afforded by continental and ecosystem‐scale colonization events explain the dramatic speciation rate heterogeneity and phylogenetic imbalance that arose during the evolutionary history of cichlid fishes.  相似文献   

14.
Carpenter bees, genus Xylocopa Latreille, a group of bees found on all continents, are of particular interest to behavioral ecologists because of their utility for studies of the evolution of mating strategies and sociality. This paper presents phylogenetic analyses based on sequences of two mitochondrial genes cytochrome oxidase 1 and cytochrome b for 22 subgenera of Xylocopa. Maximum-parsimony and maximum-likelihood methods were used to infer phylogenetic relationships. The analyses resulted in three resolved clades of subgenera: a South American group (including the subgenera Stenoxylocopa, Megaxylocopa, and Neoxylocopa), a group including the subgenera Xylocopa s.s. and Ctenoxylocopa, and an Ethiopean group (including the subgenera Afroxylocopa, Mesotrichia, Alloxylocopa, Platynopoda, Hoploxylocopa, and Koptortosoma). The relationships between the 11 other subgenera and the resolved clades are unclear. Within the Ethiopian group we found a clear separation of the African and the Oriental taxa and apparent polyphyly of the subgenus Koptortosoma. Using an evolutionary rate for ants, we investigated whether Gondwana vicariance or more recent dispersal events could best explain the present-day distribution of subgenera. Although some taxa show divergences that approach Gondwanan breakup times, most divergences between geographic groups are too recent to support a vicariance hypothesis.  相似文献   

15.
The embryonic development of Zorotypus caudelli Karny (Zoraptera) is described with the main focus on its external features. A small heart‐shaped embryo is formed on the dorsal side of the egg by the fusion of paired blastoderm regions with higher cellular density. The orientation of its anteroposterior axis is opposed to that of the egg. This unusual condition shows the potential autapomorphy of Zoraptera. The embryo extends along the egg surface and after reaching its full length, it migrates into the yolk. After developing there for a period of time, it reappears on the surface, accompanied by a reversion of its anteroposterior axis, finally taking its position on the ventral side of the egg. The definitive dorsal closure completes, and the prelarva hatches after perforating the chorion with very long egg tooth formed on the embryonic cuticle. Embryological data suggest the placement of Zoraptera among the “lower neopteran” or polyneopteran lineage: features supporting this are embryo formation by the fusion of paired regions with higher cellular density and blastokinesis accompanied by full elongation of the embryo on the egg surface. The extraordinarily long egg tooth has potential synapomorphy with Embioptera or Eukinolabia (= Embioptera + Phasmatodea). Together with the results from our previous studies on the egg structure, male reproductive system and spermatozoa, the close affinity of Zoraptera with Eukinolabia appears likely, that is, a clade Zoraptera + (Embioptera + Phasmatodea). J. Morphol. 275:295–312, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Deserts and other arid zones remain among the least studied biomes on Earth. Emerging genetic patterns of arid-distributed biota suggest a strong link between diversification history and both the onset of aridification and more recent cycles of severe aridification. A previous study based on 1 kb of mtDNA of the monotypic gecko genus Rhynchoedura identified five allopatric clades across the vast Australian arid zone. We supplemented this data with 2.2kb from three nuclear loci and additional mtDNA sequences. Phylogenetic relationships estimated from the mtDNA data with ML and Bayesian methods were largely concordant with relationships estimated with the nDNA data only, and mtDNA and nDNA data combined. These analyses, and coalescent-based species-tree inference methods implemented with (?)BEAST, largely resolve the relationships among them. We also carried out an examination of 19 morphological characters for 268 museum specimens from across Australia, including all 197 animals for which we sequenced mtDNA. The mtDNA clades differ subtly in a number of morphological features, and we describe three of them as new species, raise a fourth from synonymy, and redescribe it and the type species, Rhynchoedura ornata. We also describe a morphologically distinctive new species from Queensland based on very few specimens. The distribution of arid zone clades across what is now relatively homogeneous sand deserts seems to be related to a topographic divide between the western uplands and eastern lowlands, with species' distributions correlated with dryland rivers and major drainage divides. The existence of five cryptic species within the formerly monotypic Rhynchoedura points to ancient divergences within the arid zone that likely were driven by wet phases as well as dry ones.  相似文献   

17.
18.
At the feet of the dinosaurs: the early history and radiation of lizards   总被引:3,自引:0,他引:3  
Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages--most notably those relating to the acquisition of squamate skull kinesis--remain unclear.  相似文献   

19.
The oldest webspinners, Sinembia rossi gen. et sp. nov. and Juraembia ningchengensis gen. et sp. nov. , are described in the new family Sinembiidae fam. nov. from the Middle Jurassic of Inner Mongolia, China. They differ from the Cretaceous and more recent Embiodea in several plesiomorphic characters, namely they have a long ovipositor, three‐segmented cerci, eyes situated on the posterolateral angles of the head, and the prothoracic prescutum is absent: these characters suggest habits that strongly differ from those of the recent taxa. The loss of the ovipositor and the reduction in the number of cerci can no longer be considered as synapomorphies of the ((Embiodea + Zoraptera) + Plecoptera) and (Embiodea + Zoraptera) clades, respectively.  相似文献   

20.
The lycophyte genus Selaginella alone constitutes the family Selaginellaceae, the largest of the lycophyte families. The genus is estimated to contain 700–800 species distributed on all continents except Antarctica, with highest species diversity in tropical and subtropical regions. The monophyly of Selaginella in this broad sense has rarely been doubted, whereas its intrageneric classification has been notoriously contentious. Previous molecular studies were based on very sparse sampling of Selaginella (up to 62 species) and often used DNA sequence data from one genome. In the present study, DNA sequences of one plastid (rbcL) and one nuclear (ITS) locus from 394 accessions representing approximately 200 species of Selaginella worldwide were used to infer a phylogeny using maximum likelihood, Bayesian inference and maximum parsimony methods. The study identifies strongly supported major clades and well resolves relationships among them. Major results include: (i) six deep‐level clades are discovered representing the deep splits of Selaginella; and (ii) 20 major clades representing 20 major evolutionary lineages are identified, which differ from one another in molecular, macro‐morphological, ecological and spore features, and/or geographical distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号