首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The beetle suborder Adephaga has been the subject of many phylogenetic reconstructions utilizing a variety of data sources and inference methods. However, no strong consensus has yet emerged on the relationships among major adephagan lineages. Ultraconserved elements (UCEs) have proved useful for inferring difficult or unresolved phylogenies at varying timescales in vertebrates, arachnids and Hymenoptera. Recently, a UCE bait set was developed for Coleoptera using polyphagan genomes and a member of the order Strepsiptera as an outgroup. Here, we examine the utility of UCEs for reconstructing the phylogeny of adephagan families, in the first in vitro application a UCE bait set in Coleoptera. Our final dataset included 305 UCE loci for 18 representatives of all adephagan families except Aspidytidae, and two polyphagan outgroups, with a total concatenated length of 83 547 bp. We inferred trees using maximum likelihood analyses of the concatenated UCE alignment and coalescent species tree methods (astral ii , ASTRID, svdquartets ). Although the coalescent species tree methods had poor resolution and weak support, concatenated analyses produced well‐resolved, highly supported trees. Hydradephaga was recovered as paraphyletic, with Gyrinidae sister to Geadephaga and all other adephagans. Haliplidae was recovered as sister to Dytiscoidea, with Hygrobiidae and Amphizoidae successive sisters to Dytiscidae. Finally, Noteridae was recovered as monophyletic and sister to Meruidae. Given the success of UCE data for resolving phylogenetic relationships within Adephaga, we suggest the potential for further resolution of relationships within Adephaga using UCEs with improved taxon sampling, and by developing Adephaga‐specific probes.  相似文献   

2.
Current hypotheses regarding family relationships in the suborder Adephaga (Coleoptera) are conflicting. Here we report full-length 18S ribosomal RNA sequences of 39 adephagans and 13 outgroup taxa. Data analysis focused on the impact of sequence alignment on tree topology, using two principally different approaches. Tree alignments, which seek to minimize indels and substitutions on the tree in a single step, as implemented in an approximate procedure by the computer program POY, were contrasted with a more traditional procedure based on alignments followed by phylogenetic inference based on parsimony, likelihood, and distance analyses. Despite substantial differences between the procedures, phylogenetic conclusions regarding basal relationships within Adephaga and relationships between the four suborders of Coleoptera were broadly similar. The analysis weakly supports monophyly of Adephaga, with Polyphaga usually as its sister, and the two small suborders Myxophaga and Archostemata basal to them. In some analyses, however, Polyphaga was reconstructed as having arisen from within Hydradephaga. Adephaga generally split into two monophyletic groups, corresponding to the terrestrial Geadephaga and the aquatic Hydradephaga, as initially proposed by Crowson in 1955, consistent with a single colonization of the aquatic environment by adephagan ancestors and contradicting the recent proposition of three independent invasions. A monophyletic Hydradephaga is consistently, though not strongly, supported under most analyses, and a parametric bootstrapping test significantly rejects an hypothesis of nonmonophyly. The enigmatic Trachypachidae, which exhibit many similarities to aquatic forms but whose species are entirely terrestrial, were usually recovered as a basal lineage within Geadephaga. Strong evidence opposes the view that terrestrial trachypachids are related to the dytiscoid water beetles.  相似文献   

3.
Targeted capture and enrichment approaches have proven effective for phylogenetic study. Ultraconserved elements (UCEs) in particular have exhibited great utility for phylogenomic analyses, with the software package phyluce being among the most utilized pipelines for UCE phylogenomics, including probe design. Despite the success of UCEs, it is becoming increasing apparent that diverse lineages require probe sets tailored to focal taxa in order to improve locus recovery. However, factors affecting probe design and methods for optimizing probe sets to focal taxa remain underexplored. Here, we use newly available beetle (Coleoptera) genomic resources to investigate factors affecting UCE probe set design using phyluce . In particular, we explore the effects of stringency during initial design steps, as well as base genome choice on resulting probe sets and locus recovery. We found that both base genome choice and initial bait design stringency parameters greatly alter the number of resultant probes included in final probe sets and strongly affect the number of loci detected and recovered during in silico testing of these probe sets. In addition, we identify attributes of base genomes that correlated with high performance in probe design. Ultimately, we provide a recommended workflow for using Phyluce to design an optimized UCE probe set that will work across a targeted lineage, and use our findings to develop a new, open‐source UCE probe set for beetles of the suborder Adephaga.  相似文献   

4.
The beetle suborder Adephaga is traditionally divided into two sections on the basis of habitat, terrestrial Geadephaga and aquatic Hydradephaga. Monophyly of both groups is uncertain, and the relationship of the two groups has implications for inferring habitat transitions within Adephaga. Here we examine phylogenetic relationships of these groups using evidence provided by DNA sequences from all four suborders of beetles, including 60 species of Adephaga, 4 Archostemata, 3 Myxophaga, and 10 Polyphaga. We studied 18S ribosomal DNA and 28S ribosomal DNA, aligned with consideration of secondary structure, as well as the nuclear protein-coding gene wingless . Independent and combined Bayesian, likelihood, and parsimony analyses of all three genes supported placement of Trachypachidae in a monophyletic Geadephaga, although for analyses of 28S rDNA and some parsimony analyses only if Coleoptera is constrained to be monophyletic. Most analyses showed limited support for the monophyly of Hydradephaga. Outside of Adephaga, there is support from the ribosomal genes for a sister group relationship between Adephaga and Polyphaga. Within the small number of sampled Polyphaga, analyses of 18S rDNA, wingless , and the combined matrix supports monophyly of Polyphaga exclusive of Scirtoidea. Unconstrained analyses of the evolution of habitat suggest that Adephaga was ancestrally aquatic with one transition to terrestrial. However, in analyses constrained to disallow changes from aquatic to terrestrial habitat, the phylogenies imply two origins of aquatic habit within Adephaga.  相似文献   

5.
The evolution of the coleopteran suborder Adephaga is discussed based on a robust phylogenetic background. Analyses of morphological characters yield results nearly identical to recent molecular phylogenies, with the highly specialized Gyrinidae placed as sister to the remaining families, which form two large, reciprocally monophyletic subunits, the aquatic Haliplidae + Dytiscoidea (Meruidae, Noteridae, Aspidytidae, Amphizoidae, Hygrobiidae, Dytiscidae) on one hand, and the terrestrial Geadephaga (Trachypachidae + Carabidae) on the other. The ancestral habitat of Adephaga, either terrestrial or aquatic, remains ambiguous. The former option would imply two or three independent invasions of aquatic habitats, with very different structural adaptations in larvae of Gyrinidae, Haliplidae and Dytiscoidea.  相似文献   

6.
习欠云  王殉章 《昆虫知识》2010,47(6):1274-1279
水生肉食亚目(Hydradephaga)属于鞘翅目Coleoptera,是一类具有水生习性的食肉性真正水生甲虫(True water beetles)。在真正水生甲虫的系统分类中存在三种假说,一种是肉食亚目(Adephaga)位于该系统的基部,一种是多食亚目(Polyphaga)位于该系统基部,第三种是藻食亚目(Myxophaga)位于该系统基部。最近研究结果更多倾向第一种假说。目前水生肉食亚目大约有5 500个种,200多个属,含8个科。水生肉食亚目的科间水平系统发育关系虽被广泛研究,但观点仍不统一。有代表意义的有三个假说,一是豉甲科(Gyrinidae)位于系统基部,接下来是龙虱科(Dytiscidae)、两栖甲科(Amphizoidae)、水甲科(Hygrobiidae)、小粒龙虱科(Noteridae)与沼梭科(Haliplidae);二是沼梭科位于系统的基部;三是豉甲科位于系统的基部,接下来是沼梭科和龙虱总科(Dytiscoidea),其中龙虱总科由两栖甲科、水甲科、龙虱科、小粒龙虱科组成。目前根据形态学的分类,并结合分子系统学研究方法,第三种假说更符合水生肉食亚目的系统分类,也支持了水生肉食亚目作为一个单系,其祖先来自陆生的假说。  相似文献   

7.
Abstract. Characters of the head of adephagan larvae were examined and analysed phylogenetically. A labrum which is completely fused to the clypeofrons and the presence of a closed prepharyngeal tube are autapomorphies of Adephaga. Partial reduction of the fossa maxillaris, cardo and stipes forming a functional unit, the immobilization of the lacinia, attachment of M. craniolacinialis to the lateral stipital wall, and loss of one stipitopalpal muscle, are considered autapomorphies of Adephaga excluding Gyrinidae. Complete reduction of the fossa maxillaris and the presence of M. craniostipitalis medialis are possible autapomorphies of Adephaga excluding Gyrinidae and Haliplidae. The presence of caudal tentorial arms, insertion of the galea on the mesal side of palpomere I, and absence of the lacinia are considered synapomorphies of Trachypachidae and Dytiscoidea (Noteridae, Amphizoidae, Hygrobiidae, Dytiscidae). The presence of a slender, elongated process of the head capsule, which articulates with a corresponding socket of the cardo, is a possible autapomorphy of Dytiscoidea. The sinuate frontal sutures, distinctly protruding prementum, shortened M. craniostipitalis medialis, and absence of M. submentopraementalis are considered autapomorphies of Geadephaga excluding Trachypachidae. The presence of a regular row of hairs along the anterior hypopharyngeal margin is a possible autapomorphy of Geadephaga excluding Trachypachidae and Rhysodidae. Improvement of the hypopharyngeal filter apparatus suggests the monophyly of Anisochaeta. Presence of a penicillum and partial reduction of the lacinia are possible autapomorphies of Anisochaeta excluding Omophronini. Larvae of Cychrini, Carabini, Nebriini and Notiophilini are characterized by a strongly developed, cone-shaped hypodon. Postocular and cervical ridges, crosswise arrangement of antennal muscles, and a completely flattened hypopharynx are considered autapomorphies of Caraboidea Limbata.  相似文献   

8.
Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single‐copy nuclear protein‐coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum‐likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end‐Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family‐level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species‐rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species‐poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well‐resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.  相似文献   

9.
聂瑞娥  杨星科 《昆虫学报》2013,56(9):1055-1062
鞘翅目是世界上物种最丰富的类群, 分为原鞘亚目(Archostemata Kolbe, 1908)、 藻食亚目(Myxophaga Crowson, 1955)、 肉食亚目(Adephaga Schellenberg, 1806)和多食亚目(Polyphaga Emery, 1886)。随着分子生物学的发展,分子系统学的技术被广泛应用于鞘翅目系统学研究中。本文综述了鞘翅目高级阶元的分子系统学的研究进展及存在问题。基于分子生物学手段, 分子分类学家提出了关于鞘翅目高级阶元分子系统学很多假说, 分子分析结果支持鞘翅目的4个亚目各为单系, 而亚目间的系统关系还不统一。基于分子手段对于亚目内的系统发育关系的研究也有了一定的进展, 比如: 分子系统学结果支持肉食亚目的水生类群和陆生类群分别为单系, 水生类群为一次起源。目前, 鞘翅目高级阶元分子系统学的研究还不够成熟和完善, 主要表现为: 材料选择有限且不均衡、 基因数目和适合度不理想, 以及一些关键节点研究的欠缺。  相似文献   

10.
A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. Despite the insights gained, our findings highlight that a combined and coordinated effort of morphologists and molecular systematists is still required to expand the phylogenetic database to enable a solid and comprehensive reconstruction of adephagan phylogeny. See also Supplementary material in the online edition at doi:10.1016/j.ode.2006.05.003  相似文献   

11.
The structure of polytrophic ovarioles in both Geadephaga and Hydradephaga is reviewed. Particular attention is paid to the significance of various morphological features and their bearing on the phylogeny of Adephaga. It is concluded that the number of nurse cells in the egg chambers is a valuable character in clarifying the phylogenetic relationships. The comparative analysis of the organization of egg chambers in aquatic and terrestrial adephagans, combined with other data suggests that a relatively small and constant number of nurse cells is a plesiomorphic condition for the Adephaga. This conclusion supports the notion that Haliplidae and Gyrinidae stand close to the ancestral stock of adephagous beetles.  相似文献   

12.
A phylogenetic analysis of Adephaga is presented. It is based on 148 morphological characters of adults and larvae and focussed on a placement of the recently described Meruidae, and the genus‐level phylogeny of the smaller aquatic families Gyrinidae, Haliplidae and Noteridae. We found a sister group relationship between Gyrinidae and the remaining adephagan families, as was found in previous studies using morphology. Haliplidae are either the sister group of Dytiscoidea or the sister group of a clade comprising Geadephaga and the dytiscoid families. Trachypachidae was placed as the sister group of the rhysodid‐carabid clade or of Dytiscoidea. The monophyly of Dytiscoidea including Meru is well supported. Autapomorphies are the extensive metathoracic intercoxal septum, the origin of the metafurca from this structure, the loss of Mm. furcacoxalis anterior and posterior, and possibly the presence of an elongated subcubital setal binding patch. Meruidae was placed as sister group of the Noteridae. Synapomorphies are the absence of the transverse ridge of the metaventrite, the fusion of abdominal segments III and IV, the shape of the strongly asymmetric parameres, and the enlargement of antennomeres 5, 7 and 9. The Meru‐noterid clade is the sister group of the remaining Dytiscoidea. The exact position of Aspidytes within this clade remains ambiguous: it is either the sister group of Amphizoidae or the sister group of a clade comprising this family and Hygrobiidae + Dytiscidae. The sister group relationship between Spanglerogyrinae and Gyrininae was strongly supported. The two included genera of Gyrinini form a clade, and Enhydrini are the sister group of a monophylum comprising the remaining Enhydrini and Orectochilini. A branching pattern (Peltodytes + (Brychius + Haliplus)) within Haliplidae was confirmed. Algophilus, Apteraliplus and the Haliplus‐subgenus Liaphlus form a clade. The generic status of the two former taxa is unjustified. The Phreatodytinae are the sister group of Noterinae, and Notomicrus (+ Speonoterus), Hydrocoptus, and Pronoterus branch off successively within this subfamily. The search for the larvae of Meru and a combined analysis of morphological and molecular data should have high priority. © The Willi Hennig Society 2006.  相似文献   

13.
The family Trachypachidae is a critical group for understanding the evolution of the coleopteran suborder Adephaga. In this article, we report the first karyotypic data on Trachypachus showing a diploid number of 2n = 36 + X (meioformula n = 18 + X) and a single autosomal localization of the rDNA clusters. The evolutionary dynamics of this karyotype are discussed in the light of recent phylogenetic hypotheses of the order Coleoptera. We conclude that chromosome analysis supports a close relationship between trachypachids and the other Geadephaga and that a male karyotype with 36 + X chromosomes may well be considered ancestral for the whole suborder Adephaga.  相似文献   

14.
Discovery of Aspidytidae,a new family of aquatic Coleoptera   总被引:7,自引:0,他引:7  
The six extant aquatic families of Hydradephaga (Coleoptera) known so far represent a diverse group of beetles morphologically highly modified for life in the water. We report the discovery of a new genus with two species from South Africa and China, which differ greatly from all extant families, but resemble the Jurassic-Cretaceous dagger Liadytidae (the dagger symbol indicates that the taxa are known only as fossils). Based on a combined phylogenetic analysis of molecular and morphological data we erect a new family, Aspidytidae, which is the sister group of Dytiscidae plus Hygrobiidae. We propose a new scenario for the evolution of swimming behaviour in adephagan beetles, in which the transition into the aquatic environment is followed by complex and repeated changes in lifestyles, including the secondary complete loss of swimming ability in Aspidytidae.  相似文献   

15.
16.
Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences   总被引:9,自引:0,他引:9  
Several families in the beetle suborder Adephaga have an aquatic life style and are commonly grouped in the "Hydradephaga," but their monophyly is contentious and relationships between and within these families are poorly understood. Here we present full-length 18S rRNA sequence for 84 species of Hydradephaga, including representatives of most major groups down to the tribal level, and a total of 68 species of the largest family, Dytiscidae. Using a direct optimization method for the alignment of length-variable regions, the preferred tree topology was obtained when the cost of gaps and the cost of nucleotide changes were equal, and three hypervariable regions of 18S rRNA were downweighted by a factor of five. Confirming recent molecular studies, the Hydradephaga were found to be monophyletic, indicating a single colonization of the aquatic medium. The most basal group within Hydradephaga is Gyrinidae, followed in a comb-like arrangement by families Haliplidae, Noteridae, Amphizoidae, and Hygrobiidae plus Dytiscidae. Under most alignment parameters, Hygrobiidae is placed amid Dytiscidae in an unstable position, suggesting a possible data artifact. Basal relationships within Dytiscidae are not well established, nor is the monophyly of subfamilies Hydroporinae and Colymbetinae. In contrast, relationships at the genus level appear generally well supported. Despite the great differences in the rates of change and the significant incongruence of the phylogenetic signal in conserved vs hypervariable regions of the 18S rRNA gene, both contribute to establish relationships at all taxonomic levels.  相似文献   

17.
Basal relationships of Coleoptera inferred from 18S rDNA sequences   总被引:5,自引:2,他引:3  
The basal relationships of the hyperdiverse insect order Coleoptera (beetles) have proven difficult to resolve. Examination of beetle suborder relationships using 18S ribosomal DNA reveals a previously unproposed relationship among the four major lineages: [(Archostemata(Myxophaga(Adephaga, Polyphaga)))]. Adding representatives of most other insect orders results in a non-monophyletic Coleoptera. However, constraining Coleoptera and its suborders to be monophyletic, in analyses of beetle and outgroup sequences, also results in the above beetle relationships, with the root placed between Archostemata and the remaining suborders.  相似文献   

18.
Incongruence among phylogenetic results has become a common occurrence in analyses of genome-scale data sets. Incongruence originates from uncertainty in underlying evolutionary processes (e.g., incomplete lineage sorting) and from difficulties in determining the best analytical approaches for each situation. To overcome these difficulties, more studies are needed that identify incongruences and demonstrate practical ways to confidently resolve them. Here, we present results of a phylogenomic study based on the analysis 197 taxa and 2,526 ultraconserved element (UCE) loci. We investigate evolutionary relationships of Eucerinae, a diverse subfamily of apid bees (relatives of honey bees and bumble bees) with >1,200 species. We sampled representatives of all tribes within the group and >80% of genera, including two mysterious South American genera, Chilimalopsis and Teratognatha. Initial analysis of the UCE data revealed two conflicting hypotheses for relationships among tribes. To resolve the incongruence, we tested concatenation and species tree approaches and used a variety of additional strategies including locus filtering, partitioned gene-trees searches, and gene-based topological tests. We show that within-locus partitioning improves gene tree and subsequent species-tree estimation, and that this approach, confidently resolves the incongruence observed in our data set. After exploring our proposed analytical strategy on eucerine bees, we validated its efficacy to resolve hard phylogenetic problems by implementing it on a published UCE data set of Adephaga (Insecta: Coleoptera). Our results provide a robust phylogenetic hypothesis for Eucerinae and demonstrate a practical strategy for resolving incongruence in other phylogenomic data sets.  相似文献   

19.
The aim of the current study is to identify the adipokinetic hormone(s) (AKHs) of a basal suborder of the species‐rich Coleoptera, the Adephaga, and possibly learn more about the ancestral AKH of beetles. Moreover, we wanted to compare the ancestral AKH with AKHs of more advanced beetles, of which a number are pest insects. This would allow us to assess whether AKH mimetics would be suitable as insecticides, that is, be harmful to the pest species but not to the beneficial species. Nine species of the Adephaga were investigated and all synthesize only one octapeptide in the corpus cardiacum, as revealed by Edman degradation sequencing techniques or by mass spectrometry. The amino acid sequence pGlu‐Leu‐Asn‐Phe‐Ser‐Thr‐Gly‐Trp corresponds to Schgr‐AKH‐II that was first identified in the desert locust. It is assumed that Schgr‐AKH‐II—the peptide of a basal beetle clade—is the ancestral AKH for beetles. Some other beetle families, as well as some Hymenoptera (including honey bees) also contain this peptide, whereas most of the pest beetle species have different AKHs. This argues that those peptides and their receptors should be explored for developing mimetics with insecticidal properties. A scenario where Schgr‐AKH‐II (the only AKH of Adephaga) is used as basic molecular structure to derive almost all other known beetle AKHs via single step mutations is very likely, and supports the interpretation that Schgr‐AKH‐II is the ancestral AKH of Coleoptera.  相似文献   

20.
Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolutionary relationships are poorly understood. Also, the resolution of broader arachnid phylogeny has been hindered by an underrepresentation of mite diversity in phylogenomic analyses. To further our understanding of Acari evolution, we design targeted ultraconserved genomic elements (UCEs) probes, intended for resolving the complex relationships between mite lineages and closely related arachnids. We then test our Acari UCE baits in‐silico by constructing a phylogeny using 13 existing Acari genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari‐specific probe kit improves the recovery of loci within mites over an existing general arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet finds mites to be non‐monophyletic overall, with Opiliones (harvestmen) and Ricinuleidae (hooded tickspiders) rendering Parasitiformes paraphyletic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号