首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the DNA polymerase of bacteriophage T4 is autogenously regulated. This protein (gp43), the product of gene 43, binds to a segment of its mRNA that overlaps its ribosome binding site, and thereby blocks translation. We have determined the Kd of the gp43-operator interaction to be 1.0 x 10(-9) M. The minimum operator sequence to which gp43 binds consists of 36 nucleotides that include a hairpin (containing a 5 base-pair helix and an 8 nucleotide loop) and a single-stranded segment that contains the Shine-Dalgarno sequence of the ribosome binding site. In the distantly related bacteriophage RB69 there is a remarkable conservation of this hairpin and loop sequence at the ribosome binding site of its DNA polymerase gene. We have constructed phage operator mutants that overproduce gp43 in vivo, yet are unchanged for in vivo replication rates and phage yield. We present data that show that the replicative and autoregulatory functions are mutually exclusive activities of this polymerase, and suggest a model for gp43 synthesis that links autoregulation to replicative demand.  相似文献   

2.
3.
4.
In Qβ RNA, sequestering the coat gene ribosome binding site in a putatively strong hairpin stem structure eliminated synthesis of coat protein and activated protein synthesis from the much weaker maturation gene initiation site, located 1300 nucleotides upstream. As the stability of a hairpin stem comprising the coat gene Shine–Dalgarno site was incrementally increased, there was a corresponding increase in translation of maturation protein. The effect of the downstream coat gene ribosome binding sequence on maturation gene expression appeared to have occurred only in cis and did not require an AUG start codon or initiation of coat protein synthesis. In all cases, no structural reorganization was predicted to occur within Qβ RNA. Our results suggest that protein synthesis from a relatively weak translational initiation site is greatly influenced by the presence or absence of a stronger ribosome binding site located elsewhere on the same RNA molecule. The data are consistent with a mechanism in which multiple ribosome binding sites compete in cis for translational initiations as a means of regulating protein synthesis on a polycistronic messenger RNA.  相似文献   

5.
FourU: a novel type of RNA thermometer in Salmonella   总被引:2,自引:1,他引:1  
  相似文献   

6.
7.
8.
9.
10.
11.
12.
Riboswitches are newly discovered regulatory elements which control a wide set of basic metabolic pathways. They consist solely of RNA, sense their ligand in a preformed binding pocket and perform a conformational switch in response to ligand binding resulting in altered gene expression. We have utilized the enormous potential of RNA for molecular sensing and conformational changes to develop novel molecular switches with predetermined structural transitions in response to the binding of a small molecule. To validate these in vivo, we exploit the distance-dependent inhibitory potential of secondary structure elements placed close to the bacterial ribosome binding site. We created a translational control element by combining the theophylline aptamer with a helical communication module for which a ligand-dependent one-nucleotide slipping mechanism had been proposed. This structural element was inserted at a position just interfering with translation in the non ligand-bound form. Addition of the ligand then shifts the inhibitory element to a distance which permits efficient translation. We present here a novel regulatory mechanism in the first rationally designed, in vivo active RNA switch. Its use of a slippage mechanism to control gene expression makes it different from natural riboswitches which are based on sequestration or antitermination.  相似文献   

13.
14.
In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult. Here, we extend studies of in-frame overlapping genes II and X from filamentous phage f1 to determine if translational controls are required to regulate the gene properly. These genes encode proteins (pII and pX) with essential but opposing roles in phage DNA replication. They must be tightly regulated to maintain production of the proteins at relative steady state levels that permit continuous replication without killing the host. To determine why little or no pX appears to be made on the gene II/X mRNA, gene II translation was lowered by progressively deleting into the gene II initiator region. Increased pX translation resulted, suggesting that elongating ribosomes on the gene II mRNA interfere with internal initiation on the gene X ribosome binding site and limit gene X translation. As judged from systematically lowering the efficiency of suppression at a gene II amber codon upstream from the gene X start, the already modest level of gene II translation would have to be reduced by more than twofold to relieve all interference with internal initiation. Further downregulation of gene X expression proved to be required to maintain pX at levels relative to pII that are tolerated by the cell. Site-directed mutagenesis and nuclease mapping revealed that the gene X initiation site is sequestered in an extended RNA secondary structure that lowers gene X translation on the two mRNAs encoding it. The more general implications of the results for expression of in-frame overlapping genes are discussed.  相似文献   

15.
Maximal translation of the coat-protein gene from RNA bacteriophage MS2 requires a contiguous stretch of native MS2 RNA that extends hundreds of nucleotides upstream from the translational start site. Deletion of these upstream sequences from MS2 cDNA plasmids results in a 30-fold reduction of translational efficiency. By site-directed mutagenesis, we show that this low level of expression is caused by a hairpin structure centred around the initiation codon. When this hairpin is destabilized by the introduction of mismatches, expression from the truncated messenger increases 20-fold to almost the level of the full-length construct. Thus, the translational effect of hundreds of upstream nucleotides can be mimicked by a single substitution that destabilizes the structure. The same hairpin is also present in full-length MS2 RNA, but there it does not Impair ribosome binding. Apparently, the upstream RNA somehow reduces the inhibitory effect of the structure on translational initiation. The upstream MS2 sequence does not stimulate translation when cloned in front of another gene, nor can unrelated RNA segments activate the coat-protein gene. Several possible mechanisms for the activation are discussed and a function in gene regulation of the phage is suggested.  相似文献   

16.
Y. Liang  R. Wei  T. Hsu  C. Alford  M. Dawson    J. Karam 《Genetics》1988,119(4):743-749
The regA gene of phage T4 encodes a translational repressor that inhibits utilization of its own mRNA as well as the translation of a number of other phage-induced mRNAs. In recombinant plasmids, autogenous translational repression limits production of the RegA protein when the cloned structural gene is expressed under control of a strong, plasmid-borne promoter (lambda PL). We have found that a genetic fusion which places the regA ribosome binding domain in proximity to active translation leads to partial derepression of wild-type RegA protein synthesis. The derepression is not due to increased synthesis of regA RNA, suggesting that it occurs at the translational level. Derepressed clones of the wild-type regA gene were used to overproduce and purify the repressor. In an in vitro assay the wild-type target was sensitive and a mutant target was resistant to inhibition by the added protein. The results suggest that the sensitivity of a regA-regulated cistron to translational repression may depend on the competition between ribosomes and RegA protein for overlapping recognition sequences in the translation initiation domain of the mRNA.  相似文献   

17.
18.
Only recently, the fundamental role of regulatory RNAs in prokaryotes and eukaryotes has been appreciated. We developed a pipeline from bioinformatic prediction to experimental validation of new RNA thermometers. Known RNA thermometers are located in the 5′-untranslated region of certain heat shock or virulence genes and control translation by temperature-dependent base pairing of the ribosome binding site. We established the searchable database RNA-SURIBA (Structures of Untranslated Regions In BActeria). A structure-based search pattern reliably recognizes known RNA thermometers and predicts related structures upstream of annotated genes in complete genome sequences. The known ROSE1 (Repression Of heat Shock gene Expression) thermometer and several other functional ROSE-like elements were correctly predicted. For further investigation, we chose a new candidate upstream of the phage shock gene D (pspD) in the pspABCDE operon of E. coli. We established a new reporter gene system that measures translational control at heat shock temperatures and we demonstrated that the upstream region of pspD does not confer temperature control to the phage shock gene. However, translational efficiency was modulated by a point mutation stabilizing the predicted hairpin. Testing other candidates by this structure prediction and validation process will lead to new insights into the requirements for biologically active RNA thermometers. The database is available on . Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
D G Macejak  P Sarnow 《Enzyme》1990,44(1-4):310-319
Translation of the mRNA encoding the immunoglobulin heavy-chain binding protein (BiP) is enhanced in poliovirus-infected cells at a time when translation of host cell mRNAs is inhibited. To test whether the mRNA of BiP is translated by internal ribosome binding, like picornaviral RNAs, we constructed plasmids for the expression of dicistronic hybrid RNAs containing the 5' noncoding region (5'NCR) of BiP as an intercistronic spacer element between two cistrons. Expression of these dicistronic mRNAs in mammalian cells resulted in efficient translation of both cistrons, demonstrating that the 5'NCR of BiP can confer internal ribosome binding to a heterologous RNA. This result suggests that the mRNA encoding BiP is bifunctional and can be translated by an internal ribosome-binding mechanism, in addition to the conventional cap-dependent scanning mechanism. This is the first demonstration of a cellular mRNA that can be translated by internal ribosome binding, and implies that this may be a mechanism for cellular translational regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号