首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphogenesis in cucumber seedlings is negatively controlled by gravity   总被引:4,自引:0,他引:4  
 Seedlings of most cucurbitaceous plants develop a peg (protuberance caused by cell outgrowth) on the transition zone between the hypocotyl and root. The peg is necessary for removing the seed coat after germination. In our spaceflight experiments on the STS-95 space shuttle, Discovery, we found that cucumber (Cucumis sativus L.) seedlings grown under microgravity conditions developed two pegs symmetrically at the transition zone. Thus, cucumber seedlings potentially develop two pegs and do not require gravity for peg formation itself, but on the ground the development of one peg is suppressed in response to gravity. This may be considered as negative control of morphogenesis by gravity. Received: 17 August 1999 / Accepted: 4 October 1999  相似文献   

2.
Schmidt W  Galland P 《Planta》2000,210(5):848-852
 The negative gravitropism of the sporangiophores of Phycomyces blakesleeanus Burgeff is elicited by different sensory inputs, which include flexure of the growing zone, buoyance of lipid globules and sedimentation of paracrystalline proteins, so-called octahedral crystals (C. Schimek et al., 1999a, Planta 210: 132–142). Gravity-induced absorbance changes (GIACs), which are associated with primary events of gravity sensing, were detected in the growing zones of sporangiophores. After placing sporangiophores horizontally, GIACs were detected after a latency of about 5 min, i.e. 15–25 min prior to gravitropic bending. The spectroscopic properties of the GIACs indicate that gravitropic stimulation could imply the reduction of cytochromes. The GIACs were spectrally distinct from light-induced absorbance changes (LIACs), showing that the primary responses of the light and gravity transduction chains are different. A dual stimulation with gravity and light generated GIAC-LIACs which were distinct from the absorbance changes occurring after the single stimuli and which indicate that light and gravity interact early in the respective transduction chains. Received: 2 September 1999 / Accepted: 9 November 1999  相似文献   

3.
Komine Y  Eggink LL  Park H  Hoober JK 《Planta》2000,210(6):897-905
The alga Chlamydomonas reinhardtii contains cytoplasmic vacuoles that are often filled with a dense granule that is released from the cell by exocytosis. Purified granules contained polyphosphate, complexed with calcium and magnesium, as the predominant inorganic components. Antiserum was raised against the major 70-kDa protein in granules purified from wall-deficient (cw15) mutants, which reacted on immunoblots with larger glycoprotein complexes in purified cell wall fractions from wild-type cells. Confocal fluorescence microscopy detected binding of these antibodies predominantly at the periphery of wall-containing C. reinhardtiiy1 cells but primarily to loci in the interior of cells of the cw15 strain. Immunoelectron microscopy demonstrated that the 70-kDa protein was localized in vacuolar granules and the trans-Golgi network in sections of cw15 cells but not in the cytosol or chloroplast. Treatment of cells with a dye, fluorescent in its protonated form, indicated that the pH within vacuoles was lower than that in the cytosol, which suggested that the vacuoles are similar to lysosomes. Thus, the vacuoles may serve a dual function to provide an environment for degradation within the cell and also serve as a vehicle for secretion of specific proteins. Received: 29 September 1999 / Accepted: 20 November 1999  相似文献   

4.
In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca2+) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time. These experiments revealed that the direction of the gravity-dependent polar calcium current is reversed in less than 25 s when the cells are inverted, and that changes in the magnitude of the calcium current parallel rapidly changing g-forces during parabolic flight on the NASA C-9 aircraft. The data also revealed a hysteresis in the response of cells in the transition from 2g to micro-g in comparison to cells in the micro-g to 2-g transition, a result consistent with a role for mechanosensitive ion channels in the gravity response. The calcium current is suppressed by either nifedipine (calcium-channel blocker) or eosin yellow (plasma membrane calcium pump inhibitor). Nifedipine disrupts gravity-directed cell polarity, but not spore germination. These results indicate that gravity perception in single plant cells may be mediated by mechanosensitive calcium channels, an idea consistent with some previously proposed models of plant gravity perception.  相似文献   

5.
Köhler L  Speck T  Spatz HC 《Planta》2000,210(5):691-700
 The mechanical properties of young stems of Aristolochia macrophylla Lam. and Aristolochia brasiliensis Mart. et Zucc. were studied during elongation growth and primary differentiation. Data for the modulus of elasticity, for the viscoelastic behaviour caused by longitudinal tension and for the shear modulus resulting from torsion around a longitudinal axis were related to the underlying structural changes by quantitative analysis of stem anatomy, tissue distribution, ultrastructure, and cell wall biochemistry. The orientation of cellulose microfibrils was determined by light microscopy and small-angle X-ray diffraction, and the lignin content was determined by thioglycolic acid derivatization and spectroscopic quantification. It was demonstrated that the increase in stability during early development is due to the complementary effects of increase in cell wall material, lignification, and cellulose microfibril alignment. A detailed micromechanical model, considering internal prestresses, is proposed to explain the characteristic biphasic stress-strain behaviour as well as the strain-hardening observed. Received: 22 March 1999 / Accepted 9 September 1999  相似文献   

6.
Gravity independence of seed-to-seed cycling in Brassica rapa   总被引:2,自引:0,他引:2  
 Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity. Received: 3 August 1999 / Accepted: 27 August 1999  相似文献   

7.
Pilling J  Willmitzer L  Fisahn J 《Planta》2000,210(3):391-399
Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the transgenic lines but slightly reduced in apical segments of stems from mature plants. Stem segments from the base of juvenile PME-overexpressing plants did not differ in PME activity from the control, whereas in apical parts PME was less active than in the wild-type. During the early stages of development stems of these trangenic plants elongated more rapidly than those of the wild-type. Further evidence that overexpression of a plant-derived PME has an impact on plant development is based on modifications of tuber yield, which was reduced in the transgenic lines. Cell walls from transgenic tubers showed significant differences in their cation-binding properties in comparison with the wild-type. In particular, cell walls displayed increased affinity for sodium and calcium, while potassium binding was constant. Furthermore, the total ion content of transgenic potatoes was modified. Indications of PME-mediated differences in the distribution of ions in transgenic plants were also obtained by monitoring relaxations of the membrane potential of roots subsequent to changes in the ionic composition of the bathing solution. However, no effects on the chemical structure of pectin from tuber cell walls could be detected. Received: 24 March 1999 / Accepted: 20 August 1999  相似文献   

8.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

9.
Growth, ageing and death of a photoautotrophic plant cell culture   总被引:2,自引:0,他引:2  
Peters W  Ritter J  Tiller H  Valdes O  Renner U  Fountain M  Beck E 《Planta》2000,210(3):478-487
 Batch cultures of photoautotrophic cell suspensions of Chenopodiumrubrum L., growing in an inorganic medium on CO2 under a daily balanced light–dark regime of 16 : 8 h could be maintained for approximately 100 d without subcultivation. The long-lived cultures showed an initial cell division phase of 4 weeks, followed by a stationary phase of another 4 weeks, after which ageing and progressive cell death reduced the number of living cells and the cultures usually expired after another 3–4 weeks. These developmental phases of the cell culture were characterised with respect to photosynthetic performance, dark respiration, content of phytohormones and capacity of cell division. Cell division of the majority of the cells finished in the G1- or G0-phase of the cell cycle, caused by a pronounced decline in the endogenous levels of auxin and cytokinins. Supply of these growth factors to resting cells resulted in resumption of cytokinesis, at least by some of the cells. However, responsiveness to the phytohomones declined during the stationary phase, and subcultivation was no longer possible beyond day 60 when the phases of ageing and death commenced. Ageing was characterised by a further decline in the photosynthetic capacity of the cells, by a climacteric enhancement of dark respiration, but also by a slight increase in the level of IAA and cytokinins concomitant with a decrease in ethylene. Similarities and differences between the development of batch-cultured photoautotrophic cells of C. rubrum and that of a leaf are discussed with respect to using the cell culture as a model for a leaf. Received: 30 April 1999 / Accepted: 21 August 1999  相似文献   

10.
Gao M  Showalter AM 《Planta》2000,210(6):865-874
 Arabinogalactan-proteins (AGPs) are highly glycosylated cell surface proteins that are thought to function in plant growth and development. The developmentally regulated expression of LeAGP-1, a novel and major AGP in tomato, was examined in different organs and tissues of tomato (Lycopersicon esculentum Mill. cv. UC82B) plants with an anti-peptide antibody (i.e. the PAP antibody) directed specifically against the lysine-rich subdomain of the LeAGP-1 core protein. During cell differentiation in tomato plants, LeAGP-1 was associated with cell wall thickening and lignification of particular cell types. Specifically, LeAGP-1 was detected in secondary wall thickenings of maturing metaxylem and secondary xylem tracheary elements in roots and stems, and in thickened cell walls of phloem sieve elements. However, LeAGP-1 was also present in thin-walled, cortical parenchyma cells of seedling roots as well as thick-walled collenchyma cells in young stems, both of which are not lignified. Based on these observed patterns, possible roles for LeAGP-1 in plant growth and development are discussed. Received: 17 August 1999 / Accepted: 7 October 1999  相似文献   

11.
 A generalized transport model is derived for cell migration in an anisotropic environment and is applied to the specific cases of biased cell migration in a gradient of a stimulus (taxis; e.g., chemotaxis or haptotaxis) or along an axis of anisotropy (e.g., contact guidance). The model accounts for spatial or directional dependence of cell speed and cell turning behavior to predict a constitutive cell flux equation with drift velocity and diffusivity tensor (termed random motility tensor) that are explicit functions of the parameters of the underlying random walk model. This model provides the connection between cell locomotion and the resulting persistent random walk behavior to the observed cell migration on longer time scales, thus it provides a framework for interpreting cell migration data in terms of underlying motility mechanisms. Received: 8 April 1999  相似文献   

12.
Vetsch M  Janzik I  Schaller A 《Planta》2000,211(1):91-97
 Tomato (Lycopersicon esculentum Mill.) prosystemin in fusion with a viral signal peptide was expressed in Sf21 insect cell cultures after infection with recombinant baculoviruses. Prosystemin was purified from culture supernatants and its identity was confirmed by N-terminal sequence and mass-spectral analyses. Recombinant prosystemin was found to be equally active as compared to systemin in inducing the expression of wound-response genes in tomato plants. In cultured cells of L. peruvianum, prosystemin elicited a rapid alkalinization of the growth medium. The timing and dose-dependence of the alkalinization response were found to be identical for prosystemin and systemin, respectively. Prosystemin-triggered defense responses were inhibited by a competitive antagonist of systemin activity, indicating that the systemin sequence within the primary structure of prosystemin determines its activity. Received: 30 August 1999 / Accepted: 6 December 1999  相似文献   

13.
Freundl E  Steudle E  Hartung W 《Planta》2000,210(2):222-231
The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lpr) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching Lpr values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (JABA) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coeffcients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (JVr). This may account for the higher ABA concentrations found in the xylem at greater pressure difference. Received: 26 January 1999 / Accepted: 26 May 1999  相似文献   

14.
In many types of plant cell, bundles of actin filaments (AFs) are generally involved in cytoplasmic streaming and the organization of transvacuolar strands. Actin cross-linking proteins are believed to arrange AFs into the bundles. In root hair cells of Hydrocharis dubia (Blume) Baker, a 135-kDa polypeptide cross-reacted with an antiserum against a 135-kDa actin-bundling protein (135-ABP), a villin homologue, isolated from lily pollen tubes. Immunofluorescence microscopy revealed that the 135-kDa polypeptide co-localized with AF bundles in the transvacuolar strand and in the sub-cortical region of the cells. Microinjection of antiserum against 135-ABP into living root hair cells induced the disappearance of the transvacuolar strand. Concomitantly, thick AF bundles in the transvacuolar strand dispersed into thin bundles. In the root hair cells, AFs showed uniform polarity in the bundles, which is consistent with the in-vitro activity of 135-ABP. These results suggest that villin is a factor responsible for bundling AFs in root hair cells as well as in pollen tubes, and that it plays a key role in determining the direction of cytoplasmic streaming in these cells. Received: 16 September 1999 / Accepted: 3 December 1999  相似文献   

15.
Different spore types are abundant in the atmosphere depending on the weather conditions. Ascospores generally follow precipitation, while spore types such as Alternaria and Cladosporium are abundant in dry conditions. This project attempted to correlate fungal spore concentrations with meteorological data from Tulsa, Oklahoma during May 1998 and May 1999. Air samples were collected and analyzed by the 12-traverse method. The spore types included were Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, and other spores. Weather variables included precipitation levels, temperature, dew point, air pressure, wind speed, wind direction and wind gusts. There were over 242.57 mm of rainfall in May 1999 and only 64.01 mm in May 1998. The most abundant spore types during May 1998 and May 1999 were Cladosporium, ascospores, and basidiospores. Results showed that there were significant differences in the dry-air spora between May 1998 and May 1999. There were twice as many Cladosporium in May 1998 as in May 1999; both ascospores and basidiospores showed little change. Multiple regression analysis was used to determine which meteorological variables influenced spore concentrations. Results showed that there was no single model for all spore types. Different combinations of factors were predictors of concentration for the various fungi examined; however, temperature and dew point seemed to be the most important meteorological factors. Received: 5 July 2000 / Revised: 20 December 2000 / Accepted: 22 December 2000  相似文献   

16.
Ackers D  Buchen B  Hejnowicz Z  Sievers A 《Planta》2000,211(1):133-143
 The spatial pattern of acropetal and basipetal cytoplasmic streaming velocities has been studied by laser-Doppler-velocimetry (LDV) in the positively gravitropic (downward growing) rhizoids of Chara globularis Thuill. and for the first time in the negatively gravitropic (upward growing) protonemata. The LDV method proved to be precise and yielded reproducible results even when tiny differences in velocities were measured. In the apical parts of the streaming regions of both cell types, acropetal streaming was faster than basipetal streaming. Starting at the apical reversal point of streaming, the velocity increased basipetally with the distance from that point and became fairly constant close to the basal reversal point; subsequently, the velocity decreased slightly acropetally as the apical reversal point was again approached. There was no change in velocity at the basal reversal point. However, at the apical reversal point there was an abrupt decrease in velocity. The pattern of the ratio of acropetal to basipetal streaming velocity (VR) was a function of the relative distance of the site of measurement from the apical reversal point rather than a function of the absolute distance. Upon inversion of the rhizoids, the VR decreased on average by 3.8% (±0.4%), indicating that the effect of gravity on the streaming velocity was merely physical and without a physiological amplification. Rhizoids that had developed on the slowly rotating horizontal axis of a clinostat, and had never experienced a constant gravity vector, were similar to normally grown rhizoids with respect to VR pattern. In protonemata, the VR pattern was not significantly different from that in rhizoids although the direction of growth was inverse. In rhizoids, oryzalin caused the polar organization of the cell to disappear and nullified the differences in streaming velocities, and cytochalasin D decreased the velocity of basipetal streaming slightly more than that of acropetal streaming. Cyclopiazonic acid, known as an inhibitor of the Ca2+-ATPase of the endoplasmic reticulum, also reduced the streaming velocities in rhizoids, but had slightly more effect on the acropetal stream. It is possible that the endogenous difference in streaming velocities in both rhizoids and protonemata is caused by differences in the cytoskeletal organization of the opposing streams and/or loading of inhibitors (like Ca2+) from the apical/subapical zone into the basipetally streaming endoplasm. Received: 4 October 1999 / Accepted: 4 November 1999  相似文献   

17.
 Cell division and cell differentiation are key processes in shoot development. The Arabidopsis thaliana (L.) Heynh. SCHIZOID (SHZ) gene appears to influence cell differentiation and cell division in the shoot. The shz-2 mutant is notable in that distinct phenotypes develop, depending on the environment in which the plants are grown. When shz-2 mutants are grown in petri dishes, callus develops from the petiole and hypocotyl. In contrast, when the mutants are grown on soil, shoots appear externally stunted with malformed leaves. However, detailed examination of soil-grown mutants shows that the two phenotypes are related. Soil-grown mutants form adventitious meristems, produce a large amount of vascular tissues and have aberrant cell divisions in the meristem. Cells with abnormal cell-division patterns were found in the apical and vascular meristems, suggesting SHZ influences cell division. Development of callus in petri dishes, development of adventitious meristems and aberrations in leaves on soil suggest that SHZ influences cell differentiation. The distinct, but related phenotypes on soil and in petri dishes suggests that SHZ normally functions to regulate differentiation and/or cell division in a manner that is responsive to environmental conditions. Received: 30 July 1999 / Accepted: 22 September 1999  相似文献   

18.
 Egg cells were analysed cytologically during the female receptivity period in maize (Zea mays L., line A 188). Three classes of egg cell were distinguished: type A – small, non-vacuolated cells with a central nucleus; type B – larger cells with small vacuoles surrounding the perinuclear cytoplasm located in the middle of the cell; type C – big cells with a large apical vacuole and the mid-basal perinuclear cytoplasm. The less-dense cytoplasm of the vacuolated egg cells usually contained numerous cup- or bell-shaped mitochondria. The three egg types appear to correspond to three late stages of egg cell differentiation. The frequencies of each of the three egg types were monitored in developing maize ears before and after pollination. In young ears, with the silks just extending out of the husks, small A-type cells were found in about 86% of ovules. Their frequency decreased to about 58% at the optimum silk length, remained unchanged in non-pollinated ears, and fell to 16% at the end of the female receptivity period. However, after pollination and before fertilisation the frequency of these cells decreased to about 33%, and the larger vacuolated egg cells (types B and C) prevailed. At various stages of the receptivity period, pollination accelerated changes in the egg population, increasing the number of ovules bearing larger, vacuolated egg cells. Experiments with silk removal demonstrated that putative pollination signals act immediately after pollen deposition and are not species-specific. Received: 5 February 1999 / Accepted: 28 August 1999  相似文献   

19.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

20.
Rice MS  Lomax TL 《Planta》2000,210(6):906-913
 Hypocotyls of the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) do not elongate in response to exogenous auxin, but can respond to gravity. This appears paradoxical in light of the Cholodny-Went hypothesis, which states that shoot gravicurvature results from asymmetric stimulation of elongation by auxin. While light-grown dgt seedlings can achieve correct gravitropic reorientation, the response is slow compared to wild-type seedlings. The sensitivity of dgt seedlings to inhibition of gravicurvature by immersion in auxin or auxin-transport inhibitors is similar to that of wild-type plants, indicating that both an auxin gradient and auxin transport are required for the gravitropic response and that auxin uptake, efflux, and at least one auxin receptor are functional in dgt. Furthermore, dgt gravicurvature is the result of asymmetrically increased elongation as would be expected for an auxin-mediated response. Our results suggest differences between elongation in response to exogenous auxin (absent in dgt) and elongation in response to gravistimulation (present but attenuated in dgt) and confirm the presence of two phases during the gravitropic response, both of which are dependent on functional auxin transport. Received: 16 July 1999 / Accepted: 24 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号