首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
The formation in vitro of fibrils from type I acid-soluble calf skin collagen has been studied before and after removal of the extrahelical peptides with carboxypeptidase and with pepsin. Turbidimetric studies show that the mechanism of fibril growth in undigested collagen is similar to that in pepsin-digested collagen; following carboxypeptidase digestion, however, a different growth mechanism was apparent. The two mechanisms have been further characterized by electron microscopy. In the course of formation of fibrils from undigested collagen, “early fibrils” (short D-periodic fibrils that have both ends visible) occurred in the lag phase under the precipitating conditions employed here. After pepsin or carboxypeptidase digestion of the collagen no “early fibrils” were seen. In carboxypeptidase-digested collagen, lateral assembly was inhibited; after pepsin digestion, linear assembly was inhibited. Complete removal of the extrahelical peptides prevented fibril formation under the conditions used here. Electron-optical examination of segment-long-spacing (SLS) dimers established a more complete removal of the C-terminal peptide after carboxypeptidase digestion than after pepsin digestion. Analyses of staining patterns of SLS dimers and fibrils from undigested and digested samples showed that the C-terminal peptide in SLS crystallites and fibrils formed from undigested collagen is in a condensed conformation. A proposed conformation, in which condensation occurs predominantly in a hydrophobic region at the proximal end of the C-terminal peptide, is discussed in terms of a dual role for the C-terminal peptide in fibrillogenesis. One role, shared with the N-terminal peptide, is to participate in interactions between the 4D-staggered molecules leading to the formation of linear aggregates; the other is to participate in interactions between these linear aggregates giving rise to D-periodic aggregates and lateral (as well as linear) growth.  相似文献   

2.
The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils.  相似文献   

3.
The kinetics of spontaneous assembly of amyloid fibrils of wild-type beta(2)-microglobulin (beta(2)M) in vitro, under acid conditions (pH 2.5) and low ionic strength, has been followed using thioflavin-T (ThT) binding. In parallel experiments, the morphology of the different fibrillar species present at different time-points during the growth process were characterised using tapping-mode atomic force microscopy (TM-AFM) in air and negative stain electron microscopy (EM). The thioflavin-T assay shows a characteristic lag phase during which the nucleation of fibrils occurs before a rapid growth in fibril density. The volume of fibrils deposited on mica measured from TM-AFM images at each time-point correlates well with the fluorescence data. TM-AFM and negative-stain EM revealed the presence of various kinds of protein aggregates in the lag phase that disappear concomitantly with a rise in the density of amyloid fibrils, suggesting that these aggregates precede fibril growth and may act as nucleation sites. Three distinct morphologies of mature amyloid fibrils were observed within a single growth experiment, as observed previously for the wild-type protein and the variant N17D. Additional supercoiled morphologies of the lower-order fibrils were observed. Comparative height analysis from the TM-AFM data allows each of the mature fibril types and single protofilaments to be identified unambiguously, and reveals that the assembly occurs via a hierarchy of morphological states.  相似文献   

4.
Amyloid fibrils are insoluble protein aggregates whose accumulation in cells and tissues is connected with a range of pathological diseases. We studied the impact of 2 metal complexes (axially coordinated Hf phthalocyanine and iron (II) clathrochelate) on aggregation of insulin and lysozyme. For both proteins, the host‐guest interaction with these compounds changes the kinetics of fibrillization and affects the morphology of final aggregates. The Hf phthalocyanine is a very efficient inhibitor of insulin fibrillization; in its presence, only very low amounts of fibrils with the diameters of 0.8 to 5 nm and spherical aggregates were found. Effective concentration of fibrillization inhibition (IC50) was estimated to be 0.11 ± 0.04 μM. The clathrochelate induced the formation of thin fibrils with the diameters of 0.8 to 2.5 nm; IC50 was estimated as 20 ± 9 μM. The lysozyme fibrillization remained quite intensive in the presence of the studied compounds; they induced the formation of long filaments (the length up to 2.5 μm, the diameters of 1.5‐3.5 nm). These fibrils noticeably differed from those of free lysozyme short linear species (the diameters of 3‐5 nm, the length up to 0.6 μm). Thinning and elongation of fibrils suggest that the metal complexes bind mainly to the grooves of protofilaments; this hinders the stacking of early aggregates or protofilaments together but does not hinder their growth. The image of the fibril separated into 2 protofilaments allows suggesting that the fibril formation occurs via the growth of the parallel protofilaments with their subsequent twisting in the fibril. The changes of the lysozyme intrinsic fluorescence indicate that both metal complexes interact with the protein during the stage of the fibrillar seeds formation.  相似文献   

5.
Benzthiazole dye thioflavin T (ThT) is widely used to study the formation and structure of amyloid fibrils. Nevertheless, till now there is no common opinion concerning molecular mechanisms of ThT binding to amyloid fibrils and the reasons of dramatic increase in its fluorescence quantum yield on incorporation into amyloid fibrils. Our data prove that ThT molecules incorporate in the amyloid fibrils in the monomeric form and there is no ground to suppose the formation of ThT dimers, eximers, or micells. It was shown that the increase in the quantum yield of ThT incorporated in amyloid fibrils was caused by restriction of benzthiazole and aminobenzene rings torsion fluctuations relative to each other. The use of equilibrium microdialysis allowed determining the absorption spectrum, the number of binding modes of ThT with insulin amyloid fibrils and for each mode determining the binding constants and the number of binding sites for each mode.  相似文献   

6.
Neutral soluble collagen was extracted from lathyritic rat skin under proteolysis-inhibited conditions. Purified solutions were characterized by electric birefringence and heterodyne beat quasi-elastic light-scattering techniques under conditions where the monomeric form was stable (at 4 degrees C in 0.032 M phosphate buffer at pH 7.04). Solutions were then heated and the birefringence and light scattering followed during the fibrillogenesis reaction. The monomer presents a translational diffusion coefficient of 0.85 X 10(-7) cm2/s and a rotary diffusion coefficient of 1150 +/- 50 s-1; these values are consistent with a rodlike molecular model of 220 +/- 10 nm length and 4 +/- 1 nm diameter, substantially different from electron microscopic values of 290 and 1.5 nm, respectively. We propose that at pH 7.04 and relatively high ionic strength, the collagen monomer unit must exhibit substantial deviation from a completely rigid and extended rodlike structure. During the entire lag phase in a thermally induced fibrillogenesis reaction, the relaxation times for both translational and rotational motion remain virtually unchanged. The monomer polarity is also unchanged, as shown by reverse pulse birefringence data. No intermediate size soluble aggregates, such as dimers or trimers, have been detected between monomer and very large aggregates or fibrils during the process, although early multistep assembly products (dimers, trimers) could have been seen if present. These data suggest a model for fibrillogenesis emphasizing a monomer-related nucleation event, such as internal stiffening or conformational transition, followed by a rapid continuous growth up to large fibrils.  相似文献   

7.
A technique was developed for studying the nucleation and growth of fibrillar protein aggregates. Fourier transform infrared and attenuated total reflection spectroscopy were used to measure changes in the intermolecular beta-sheet content of bovine pancreatic insulin in bulk solution and on model polystyrene (PS) surfaces at pH 1. The kinetics of beta-sheet formation were shown to evolve in two stages. Combined Fourier transform infrared, dynamic light scattering, atomic force microscopy, and thioflavin-T fluorescence measurements confirmed that the first stage in the kinetics was related to the formation of nonfibrillar aggregates that have a radius of 13 +/- 1 nm. The second stage was found to be associated with the growth of insulin fibrils. The beta-sheet kinetics in this second stage were used to determine the nucleation and growth rates of fibrils over a range of temperatures between 60 degrees C and 80 degrees C. The nucleation and growth rates were shown to display Arrhenius kinetics, and the associated energy barriers were extracted for fibrils formed in bulk solution and at PS surfaces. These experiments showed that fibrils are nucleated more quickly in the presence of hydrophobic PS surfaces but that the corresponding fibril growth rates decrease. These observations are interpreted in terms of the differences in the attempt frequencies and energy barriers associated with the nucleation and growth of fibrils. They are also discussed in the context of differences in protein concentration, mobility, and conformational and colloidal stability that exist between insulin molecules in bulk solution and those that are localized at hydrophobic PS interfaces.  相似文献   

8.
Multiple steps during the formation of beta-lactoglobulin fibrils   总被引:2,自引:0,他引:2  
In this study, the heat induced fibrilar aggregation of the whey protein beta-lactoglobulin is investigated at low pH and at low ionic strength. Under these circumstances, tapping mode atomic force microscopy results indicate that the fibrils formed have a periodic structure with a period of about 25 nm and a thickness of one or two protein monomers. Fibril formation is followed in situ using light scattering and proton NMR techniques. The dynamic light scattering results show that the fibrils that form after short heating periods (up to a few hours) disintegrate upon slow cooling, whereas fibrils that form during long heating periods do not disintegrate upon subsequent slow cooling. The NMR results show that even after prolonged heating an appreciable fraction of the protein molecules is incorporated into fibrils only when the beta-lactoglobulin concentration is above approximately 2.5 wt %. The data imply multiple steps during the heat induced formation of beta-lactoglobulin fibrils at low pH and at low ionic strength: (partly) denatured protein monomers are either incorporated into fibrils or form instead a low molecular weight complex that is incapable of forming fibrils. Fibril formation itself also involves (at least) two steps: the reversible formation of linear aggregates, followed by a slow process of "consolidation" after which the fibrils no longer disintegrate upon slow cooling.  相似文献   

9.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

10.
Although amyloid fibrils deposit with various proteins, the comprehensive mechanism by which they form remains unclear. We studied the formation of fibrils of human islet amyloid polypeptide associated with type II diabetes in the presence of various concentrations of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) under acidic and neutral pH conditions using CD, amyloid-specific thioflavin T fluorescence, fluorescence imaging with thioflavin T, and atomic force microscopy. At low pH, the formation of fibrils was promoted by HFIP with an optimum at 5% (v/v). At neutral pH in the absence of HFIP, significant amounts of amorphous aggregates formed in addition to the fibrils. The addition of HFIP suppressed the formation of amorphous aggregates, leading to a predominance of fibrils with an optimum effect at 25% (v/v). Under both conditions, higher concentrations of HFIP dissolved the fibrils and stabilized the α-helical structure. The results indicate that fibrils and amorphous aggregates are different types of precipitates formed by exclusion from water-HFIP mixtures. The exclusion occurs through the combined effects of hydrophobic interactions and electrostatic interactions, both of which are strengthened by low concentrations of HFIP, and a subtle balance between the two types of interactions determines whether the fibrils or amorphous aggregates dominate. We suggest a general view of how the structure of precipitates varies dramatically from single crystals to amyloid fibrils and amorphous aggregates.  相似文献   

11.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

12.
The Saccharomyces cerevisiae Cks protein Cks1 has a COOH-terminal glutamine-rich sequence not present in other homologues. Cks proteins domain swap to form dimers but unique to Cks1 is the anti-parallel arrangement of protomers within the dimer. Despite the differences in Cks1 compared with other Cks proteins, we find the domain swapping properties are very similar. However, aggregation of Cks1 occurs by a route distinct from the other Cks proteins studied to date. Cks1 formed fibrillar aggregates at room temperature and neutral pH. During this process, Cks1 underwent proteolytic cleavage at a trypsin-like site into two fragments, the globular Cks domain and the glutamine-rich COOH terminus. At high protein concentrations, the rate of fibril formation was the same as the rate of proteolysis. The dominant species present within the fibrils was the glutamine-rich sequence. Consistent with this result, fibril formation was enhanced by addition of trypsin. Moreover, a truncated variant lacking the glutamine-rich sequence did not form fibrils under the same conditions. A lag phase at low protein concentrations indicates that fibril formation occurs through a nucleation and growth mechanism. The aggregates appear to resemble amyloid fibrils, in that they show the typical cross-beta x-ray diffraction pattern. Moreover, infrared spectroscopy data indicate that the glutamine side chains are hydrogen-bonded along the axis of the fibril. Our results indicate that the proteolytic reaction is the crucial step initiating aggregation and demonstrate that Cks1 is a simple, tunable model system for exploring aggregation mechanisms associated with polyglutamine deposition diseases.  相似文献   

13.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates.  相似文献   

14.
We have studied the self-association reactions of purified GDP-liganded tubulin into double rings and taxoid-induced microtubules, employing synchrotron time-resolved x-ray solution scattering. The experimental scattering profiles have been interpreted by reference to the known scattering profiles to 3 nm resolution and to the low-resolution structures of the tubulin dimer, tubulin double rings, and microtubules, and by comparison with oligomer models and model mixtures. The time courses of the scattering bands corresponding to the different structural features were monitored during the assembly reactions under varying biochemical conditions. GDP-tubulin essentially stays as a dimer at low Mg(2+) ion activity, in either the absence or presence of taxoid. Upon addition of the divalent cations, it associates into either double-ring aggregates or taxoid-induced microtubules by different pathways. Both processes have the formation of small linear (short protofilament-like) tubulin oligomers in common. Tubulin double-ring aggregate formation, which is shown by x-ray scattering to be favored in the GDP- versus the GTP-liganded protein, can actually block microtubule assembly. The tubulin self-association leading to double rings, as determined by sedimentation velocity, is endothermic. The formation of the double-ring aggregates from oligomers, which involves additional intermolecular contacts, is exothermic, as shown by x-ray and light scattering. Microtubule assembly can be initiated from GDP-tubulin dimers or oligomers. Under fast polymerization conditions, after a short lag time, open taxoid-induced microtubular sheets have been clearly detected (monitored by the central scattering and the maximum corresponding to the J(n) Bessel function), which slowly close into microtubules (monitored by the appearance of their characteristic J(0), J(3), and J (n) - (3) Bessel function maxima). This provides direct evidence for the bidimensional assembly of taxoid-induced microtubule polymers in solution and argues against helical growth. The rate of microtubule formation was increased by the same factors known to enhance taxoid-induced microtubule stability. The results suggest that taxoids induce the accretion of the existing Mg(2+)-induced GDP-tubulin oligomers, thus forming small bidimensional polymers that are necessary to nucleate the microtubular sheets, possibly by binding to or modifying the lateral interaction sites between tubulin dimers.  相似文献   

15.
Protein aggregation is a process in which identical proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as amorphous, lacking any long-range order, or highly ordered fibrils. Protein fibrils can be composed of native globular molecules, such as the hemoglobin molecules in sickle-cell fibrils, or can be reorganized beta-sheet-rich aggregates, termed amyloid-like fibrils. Amyloid fibrils are associated with several pathological conditions in humans, including Alzheimer disease and diabetes type II. We studied the structure of bacterial inclusion bodies, which have been believed to belong to the amorphous class of aggregates. We demonstrate that all three in vivo-derived inclusion bodies studied are amyloid-like and comprised of amino-acid sequence-specific cross-beta structure. These findings suggest that inclusion bodies are structured, that amyloid formation is an omnipresent process both in eukaryotes and prokaryotes, and that amino acid sequences evolve to avoid the amyloid conformation.  相似文献   

16.
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (Ea’s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer’s disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.  相似文献   

17.
Myostatin, a negative regulator of muscle growth, has been implicated in sporadic inclusion body myositis (sIBM). sIBM is the most common age-related muscle-wastage disease with a pathogenesis similar to that of amyloid disorders such as Alzheimer''s and Parkinson''s diseases. Myostatin precursor protein (MstnPP) has been shown to associate with large molecular weight filamentous inclusions containing the Alzheimer''s amyloid beta peptide in sIBM tissue, and MstnPP is upregulated following ER stress. The mechanism for how MstnPP contributes to disease pathogenesis is unknown. Here, we show for the first time that MstnPP is capable of forming amyloid fibrils in vitro. When MstnPP-containing Escherichia coli inclusion bodies are refolded and purified, a proportion of MstnPP spontaneously misfolds into amyloid-like aggregates as characterised by electron microscopy and binding of the amyloid-specific dye thioflavin T. When subjected to a slightly acidic pH and elevated temperature, the aggregates form straight and unbranched amyloid fibrils 15 nm in diameter and also exhibit higher order amyloid structures. Circular dichroism spectroscopy reveals that the amyloid fibrils are dominated by β-sheet and that their formation occurs via a conformational change that occurs at a physiologically relevant temperature. Importantly, MstnPP aggregates and protofibrils have a negative effect on the viability of myoblasts. These novel results show that the myostatin precursor protein is capable of forming amyloid structures in vitro with implications for a role in sIBM pathogenesis.  相似文献   

18.
A structural investigation of the sodium dodecyl sulfate (SDS)-induced fibrillation of α-synuclein (αSN), a 140-amino-acid protein implicated in Parkinson's disease, has been performed. Spectroscopic analysis has been combined with isothermal titration calorimetry, small-angle X-ray scattering, and transmission electron microscopy to elucidate a fibrillation pathway that is remarkably different from the fibrillation pathway in the absence of SDS. Fibrillation occurs most extensively and most rapidly (starting within 45 min) under conditions where 12 SDS molecules are bound per αSN molecule, which is also the range where SDS binding is associated with the highest enthalpy. Fibrillation is only reduced in proportion to the fraction of SDS below 25 mol% SDS in mixed surfactant mixtures with nonionic surfactants and is inhibited by formation of bulk micelles and induction of α-helical structure. In this fibrillogenic complex, 4 αSN molecules initially associate with 40-50 SDS molecules to form a shared micelle that gradually grows in size. The complex initially exhibits a mixture of random coil and α-helix, but incubation results in a structural conversion into β-sheet structure and concomitant formation of thioflavin-T-binding fibrils over a period of several hours. Based on small-angle X-ray scattering, the aggregates elongate as a beads-on-a-string structure in which individual units of ellipsoidal SDS-αSN are bridged by strings of the protein, so that aggregates nucleate around the surface of protein-stabilized micelles. Thus, fibrillation in this case occurs by a process of continuous accretion rather than by the rate-limiting accumulation of a distinct nucleus. The morphology of the SDS-induced fibrils does not exhibit the classical rod-like structures formed by αSN when aggregated by agitation in the absence of SDS. The SDS-induced fibrils have a flexible worm-like appearance, which can be converted into classical straight fibrils by continuous agitation. SDS-induced fibrillation represents an alternative and highly reproducible mechanism for fibrillation where protein association is driven by the formation of shared micelles, which subsequently allows the formation of β-sheet structures that presumably link individual micelles. This illustrates that protein fibrillation may occur by remarkably different mechanisms, testifying to the versatility of this process.  相似文献   

19.
The process of amyloid formation by the amyloid beta peptide (Abeta), i.e., the misassembly of Abetapeptides into soluble quaternary structures and, ultimately, amyloid fibrils, appears to be at the center of Alzheimer's disease (AD) pathology. We have shown that abnormal oxidative metabolites, including cholesterol-derived aldehydes, modify Abeta and accelerate the early stages of amyloidogenesis (the formation of spherical aggregates). This process, which we have termed metabolite-initiated protein misfolding, could explain why hypercholesterolemia and inflammation are risk factors for sporadic AD. Herein, the mechanism by which cholesterol metabolites hasten Abeta 1-40 amyloidogenesis is explored, revealing a process that has at least two steps. In the first step, metabolites modify Abeta peptides by Schiff base formation. The Abeta-metabolite adducts form spherical aggregates by a downhill polymerization that does not require a nucleation step, dramatically accelerating Abeta aggregation. In agitated samples, a second step occurs in which fibrillar aggregates form, a step also accelerated by cholesterol metabolites. However, the metabolites do not affect the rate of fibril growth in seeded aggregation assays; their role appears to be in initiating amyloidogenesis by lowering the critical concentration for aggregation into the nanomolar range. Small molecules that block Schiff base formation inhibit the metabolite effect, demonstrating the importance of the covalent adduct. Metabolite-initiated amyloidogenesis offers an explanation for how Abeta aggregation could occur at physiological nanomolar concentrations.  相似文献   

20.
To understand how the conformational heterogeneity of protofibrils formed by any protein, as well as the mechanisms of their formation, are modulated by a change in aggregation conditions, we studied the formation of amyloid protofibrils by barstar at low pH by multiple structural probes in the presence of hexafluoroisopropanol (HFIP). In the presence of 10% HFIP, aggregation proceeds with the transient formation of spherical oligomers and leads to the formation of both protofibrils and fibrils. Curly short protofibrils and fibrils are seen to form early during the aggregation reaction, and both are seen to grow gradually in length during the course of the reaction. Atomic force microscopy images reveal that the HFIP-induced protofibrils are long (~300 nm in length), curly, and beaded and appear to be composed primarily of β-sheet bilayers, with heights of ~2.4 nm. The protofibrils formed in the presence of HFIP differ in both their structures and their stabilities from the protofibrils formed either in the absence of alcohol or in the presence of a related alcohol, trifluoroethanol (TFE). Aggregation appears to proceed via an isodesmic polymerization mechanism. Internal structure in the growing aggregates changes in two stages during protofibril formation. In the first stage, an α-helix-rich oligomeric intermediate is formed. In the second stage, the level of β-sheet structure increases at the expense of some α-helical structure. The second stage itself appears to occur in two distinct steps. The creation of thioflavin T binding sites occurs concomitantly with aggregate elongation and is seen to precede the change in secondary structure. The long straight fibrils with characteristic heights of 8-10 nm, which form in the course of the HFIP-induced aggregation reaction, have not been observed to form either in the absence of alcohol or in the presence of TFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号