首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ‐driven toxigenic conversion or expression of the CTXφ‐encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ‐driven pathogenicity in V. cholerae. Our results indicate that mucin‐associated O‐glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ‐related virulence factors, including the toxin co‐regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O‐glycan structures affect CTXφ‐mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.  相似文献   

2.
TDP‐43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP‐43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein''s disordered C‐terminal glycine‐rich region. P112H mutation of TDP‐43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP‐43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP‐43 truncated proteins with or without P112H mutation. We show that P112H‐mutated TDP‐43 proteins exhibit higher thermal stability, impaired RNA‐binding activity, and a reduced tendency to aggregate relative to wild‐type proteins. Near‐UV CD, 2D‐nuclear‐magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP‐43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.  相似文献   

3.
While PAX5 is an important tumor suppressor gene in B‐cell acute lymphoblastic leukemia (B‐ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5‐JAK2 encodes a protein consisting of the PAX5 DNA‐binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5‐JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5 Jak2/+ mice rapidly developed an aggressive B‐ALL in the absence of another cooperating exogenous gene mutation. The DNA‐binding function and kinase activity of Pax5‐Jak2 as well as IL‐7 signaling contributed to leukemia development. Interestingly, all Pax5 Jak2/+ tumors lost the remaining wild‐type Pax5 allele, allowing efficient DNA‐binding of Pax5‐Jak2. While we could not find evidence for a nuclear role of Pax5‐Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5 Jak2/+ B‐ALL tumors, implying that nuclear Pax5‐Jak2 phosphorylates STAT5. Together, these data reveal Pax5‐Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.  相似文献   

4.
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.  相似文献   

5.
6.
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl‐tRNA synthetases (aaRS), the glutamyl‐ (ERS), glutaminyl‐ (QRS), and methionyl‐ (MRS) tRNA synthetases. In eukaryotes, such multi‐aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N‐terminal GST‐like domain involved in the assembly of two independent complexes: the Q‐complex (tRip:ERS:QRS) and the M‐complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST‐like domains of tRip and ERS (tRip‐N:ERS‐N) is central. In this study, the crystal structure of the N‐terminal GST‐like domain of ERS was solved and made possible further investigation of the solution architecture of the Q‐ and M‐complexes by small‐angle x‐ray scattering (SAXS). This strategy relied on the engineering of a tRip‐N‐ERS‐N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.  相似文献   

7.
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two‐component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high‐level β‐lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β‐lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β‐lactams. We propose that VxrAB reduces antibiotic‐induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β‐lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism''s ability to counteract diverse antibiotic‐induced stresses promotes high‐level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.  相似文献   

8.
Ferritin is a promising drug delivery platform and has been functionalized through genetic modifications. This work has designed and expressed a dual‐functional engineered human heavy‐chain ferritin (HFn) with the inserted functional peptide PAS and RGDK to extend half‐life and improve tumor targeted drug delivery. A facile and cost‐effective two‐step purification pathway for recombinant HFn was developed. The genetic modification was found to affect HFn conformation, and therefore varied the purification performance. Heat‐acid precipitation followed by butyl fast flow hydrophobic interaction chromatography (HIC) has been developed to purify HFn and modified HFns. Nucleic acid removal reached above 99.8% for HFn and modified HFns. However, HFn purity reached above 95% and recovery yield (overall) above 90%, compared with modified HFns purity above 82% and recovery yield (overall) above 58%. It is interesting to find that the inserted functional peptides significantly changed the molecule conformation, where a putative turnover of the E‐helix with the inserted functional peptides formed a “flop” conformation, in contrast with the “flip” conformation of HFn. It could be the cause of fragile stability of modified HFns, and therefore less tolerant to heat and acid condition, observed by the lower recovery yield in heat‐acid precipitation.  相似文献   

9.
Transfer RNA (tRNA)‐derived fragments are the non‐coding single‐stranded RNAs involved in several physiological and pathological processes. Herein, we investigated the role of tRF‐1020, a tRNA fragment, in diabetes‐induced retinal microvascular complications. The results showed that the levels of tRF‐1020 expression were down‐regulated in diabetic retinal vessels and retinal endothelial cells following high glucose or H2O2 stress. Overexpressing tRF‐1020 led to decreased endothelial cell viability, proliferation, migration, and tube formation and alleviated retinal vascular dysfunction as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. By contrast, tRF‐1020 silencing displayed the opposite effects. tRF‐1020 regulated endothelial angiogenic functions and retinal vascular dysfunction by targeting Wnt signalling. Moreover, the levels of tRF‐1020 expression were reduced in aqueous humour and vitreous samples of the patients with diabetic retinopathy. Collectively, tRF‐1020 is a potential target for the diagnosis and treatment of diabetic retinopathy.  相似文献   

10.
11.
SARS‐CoV‐2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID‐19. Spike protein of SARS‐CoV‐2 mediates viral entry into host cells by binding ACE2 through the receptor‐binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD‐1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD‐1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD‐1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD‐2). The secondary structure and tertiary structure of RBD‐1 were largely maintained without glycosylation. In particular, the major β‐sheet content of RBD‐1 was almost unaltered. RBD‐1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10–8 M. Thus, RBD‐1 was expected to apply in the vaccine development, screening drugs and virus test kit.  相似文献   

12.
The innate immune receptor RIG‐I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG‐I''s C‐terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non‐specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG‐I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs‐Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD‐chosen RNAs to bind the helicase domain, while at the same time blocking non‐specific RNAs. These findings also indicate that CHL could represent a novel target for RIG‐I‐based therapeutics.  相似文献   

13.
The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS‐CoV‐2 virus protein structures in the PDB. These include the variants of concern, which are shown both on the sequences and 3D structures of the proteins. The second addition is the inclusion of the available AlphaFold models for human proteins. The pages allow a search of the protein against existing structures in the PDB via the Sequence Annotated by Structure (SAS) server, so one can easily compare the predicted model against experimentally determined structures. The server is freely accessible to all at http://www.ebi.ac.uk/pdbsum.  相似文献   

14.
15.
16.
The BRCA2 tumor suppressor is a DNA double‐strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2‐deficient cells spontaneously accumulate DNA‐RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD‐box RNA helicase DDX5 as a BRCA2‐interacting protein. DDX5 associates with DNA‐RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA‐RNA hybrid‐unwinding activity of DDX5 helicase. An impaired BRCA2‐DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2‐T207A, reduces the association of DDX5 with DNA‐RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA‐RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.  相似文献   

17.
Tuberculosis (TB) treatment is plagued by liver damage, which often leads to treatment interruptions. Circular RNAs (circRNAs) are a special class of non‐coding RNAs abundant in body fluids with important biological functions. However, the role of circRNA in anti‐tuberculosis drug‐induced liver injury (ADLI) is unclear. We explored ADLI‐specific circRNAs in TB patients using circRNA microarrays and verified circMARS in a cohort of 300 individuals. In addition to the value assessment of circMARS in patients using a receiver operating characteristic (ROC) curve, cell experiments were also performed under the guidance of bioinformatics analyses. In particular, we found that circMARS acts as a miRNA sponge by binding to miRNAs. Compared with the blank group, the expressions of circMARS, KMT2C gene, and EGFR protein in the ADLI group were increased, while miR‐6808‐5p, miR‐6874‐3p, and miR‐3157‐5p were decreased. Furthermore, when si‐circMARS was used in the ADLI groups, circMARS demotion manifested the opposite results. Subsequently, a self‐controlled cohort of 35 participants was used to verify the circMARS–miR‐6808‐5p/‐6874‐3p/‐3157‐5p–KMT2C–EGFR function axis. Therefore, circMARS may participate in the compensatory repair mechanism of ADLI through the function axis, and may be a potential biomarker for ADLI diagnosis in TB patients.  相似文献   

18.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

19.
With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging‐related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging‐related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging‐related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging‐related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号