首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Senescence is a decrease in functional capacity, increasing mortality rate with age. Sexual signals indicate functional capacity, because costs of ornamentation ensure signal honesty, and are therefore expected to senesce, tracking physiological deterioration and mortality. For sexual traits, mixed associations with age and positive associations with life expectancy have been reported. However, whether these associations are caused by selective disappearance and/or within‐individual senescence of sexual signals, respectively, is not known. We previously reported that zebra finches with redder bills had greater life expectancy, based on a single bill colour measurement per individual. We here extend this analysis using longitudinal data and show that this finding is attributable to terminal declines in bill redness in the year before death, with no detectable change in presenescent redness. Additionally, there was a quadratic relationship between presenescent bill colouration and survival: individuals with intermediate bill redness have maximum survival prospects. This may reflect that redder individuals overinvest in colouration and/or associated physiological changes, while below‐average bill redness probably reflects poorer phenotypic quality. Together, this pattern suggests that bill colouration is defended against physiological deterioration, because of mate attraction benefits, or that physiological deterioration is not a gradual process, but accelerates sharply prior to death. We discuss these possibilities in the context of the reliability theory of ageing and sexual selection.  相似文献   

2.
3.
Ageing is a process involving morphological and physiological modifications that gradually appear with time and lead to death. Given the heterogeneous nature of the process among individuals and among the different organs, tissues, and systems in the same individual, the concept of has been developed. The search for parameters that enable us to evaluate biological age--and therefore longevity--and the analysis of the efficacy of strategies to retard the ageing process are the objectives of gerontology. At present, one of the most important theories of ageing is the theory. Given that immune cell function is an excellent marker of health, we review the concepts that enable different functional and oxidative stress parameters in immune cells to be identified as markers of biological age and longevity. None of these parameters is universally accepted as a biomarker of ageing, although they are becoming increasingly important.  相似文献   

4.
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.  相似文献   

5.
Physiological ageing of potato tubers: A Review   总被引:1,自引:0,他引:1  
Numerous theories have been proposed to describe the complex process of ageing in biological systems. Two general groups of ageing theories currently exist: 1) stochastic where the accumulation of random molecular damage leads to loss of information vital to the cell; and, 2) systemic where an organised, genetically based sequence of metabolic activities leads to programmed ageing. Whether these are acceptable models of ageing in potato tubers is unknown although the tuber could provide a useful experimental system for studying ageing. An initial requirement for advancing the concept of ageing in potato tubers must centre on the development of a suitable ageing index. A review of the literature suggests that a modified approach to ‘sprouting capacity’ and ‘incubation period’ may allow tuber ageing to be described in mathematical terms that would, in turn, facilitate the development of a physiological ageing index as well as temperature sensitive predictive models. Although a number of biochemical studies of ageing have been pursued, the development of adequate biomarkers has yet to achieve a coordinated level of development as found in a range of organisms. For example, ageing in other biological systems may be viewed as an outcome of an accumulation of random molecular damage and may be primarily caused by a changing balance between reactive oxygen species and diminishing levels of protective agents such as superoxide dismutase, alpha‐tocopherol or vitamin C. The exploration of these and similar problems in the context of appropriate modelling approaches should allow a better understanding of physiological ageing in potato tubers.  相似文献   

6.
7.
衰老是任何生物都无法避免的生理现象,它由多种因素引起,其过程极其复杂.酵母细胞是目前衰老研究领域公认的模式生物,一系列影响衰老的分子作用机理及调控因素的发现均源自于对酵母细胞的研究.自然衰老是酵母细胞的衰老模式之一,由于该衰老过程与其他高等真核细胞(特别是哺乳动物细胞)极为相似,近年来受到广泛关注.全面比较酵母细胞衰老的两种模式,详细介绍自然衰老过程中分子作用机理的研究进展,重点阐述其复杂的自然寿命调控通路,包括卡路里限制以及药物添加对Ras/PKA、Sch9、Tor等营养依赖型调控通路的影响,并展望未来该领域需要解决的重要科学问题,为全面深入了解高等生物,特别是人类自身的衰老机理提供参考.  相似文献   

8.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   

9.
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease.This article is part of the theme issue ‘Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity’.  相似文献   

10.
Ageing can be characterised by a general decline in cellular function, which affects whole-body homoeostasis with metabolic dysfunction—a common hallmark of ageing. The identification and characterisation of the genetic pathways involved are paramount to the understanding of how we age and the development of therapeutic strategies for combating age-related disease. Furthermore, in addition to understanding the ageing process itself, we must understand the interactions ageing has with genetic variation that results in disease phenotypes. The use of model systems such as the mouse, which has a relatively short lifespan, rapid reproduction (resulting in a large number of offspring), well-characterised biology, a fully sequenced genome, and the availability of tools for genetic manipulation is essential for such studies. Here we review the relationship between ageing and metabolism and highlight the need for modelling these processes.  相似文献   

11.
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.  相似文献   

12.
13.
14.
The evolution of ageing and longevity.   总被引:8,自引:0,他引:8  
Ageing is not adaptive since it reduces reproductive potential, and the argument that it evolved to provide offspring with living space is hard to sustain for most species. An alternative theory is based on the recognition that the force of natural selection declines with age, since in most environments individuals die from predation, disease or starvation. Ageing could therefore be the combined result of late-expressed deleterious genes which are beyond the reach of effective negative selection. However, this argument is circular, since the concept of 'late expression' itself implies the prior existence of adult age-related physiological processes. Organisms that do not age are essentially in a steady state in which chronologically young and old individuals are physiologically the same. In this situation the synthesis of macromolecules must be sufficiently accurate to prevent error feedback and the development of lethal 'error catastrophes'. This involves the expenditure of energy, which is required for both kinetic proof-reading and other accuracy promoting devices. It may be selectively advantageous for higher organisms to adopt an energy saving strategy of reduced accuracy in somatic cells to accelerate development and reproduction, but the consequence will be eventual deterioration and death. This 'disposable soma' theory of the evolution of ageing also proposes that a high level of accuracy is maintained in immortal germ line cells, or alternatively, that any defective germ cells are eliminated. The evolution of an increase in longevity in mammals may be due to a concomitant reduction in the rates of growth and reproduction and an increase in the accuracy of synthesis of macromolecules. The theory can be tested by measuring accuracy in germ line and somatic cells and also by comparing somatic cells from mammals with different longevities.  相似文献   

15.
Ageing induces a great risk factor that participates in progressing various degenerative diseases morbidities. The main characteristic of ageing is the failure in maintaining homeostasis in the organs with a cellular senescence. Senescence is characterized by reduced cell growth, evade cellular death, and acquiring a senescence‐associated secretory phenotype (SASP). Mesenchymal stem cells (MSCs) are advantageous cells in regenerative medicine, exerting pleiotropic functions by producing soluble factors, such as exosomes. MSCs and their exosomes (MSCs‐Exo) kinetic are affected by ageing and other aged exosomes. Exosomes biogenesis from aged MSCs is accelerated and their exosomal cargoes, such as miRNAs, vary as compared to those of normal cells. Besides, exosomes from aged MSCs loss their regenerative potential and may negatively influence the function of recipient cells. MSCs‐Exo can improve ageing and age‐related diseases; however, the detailed mechanisms remain yet elusive. Although exosomes‐therapy may serve as a new approach to combat ageing, the translation of preclinical results to clinic needs more extensive investigation on exosomes both on their biology and related techniques. Overall, scrutiny on the effect of ageing on MSCs and vice versa is vital for designing novel therapy using MSCs with focus on the management of older individuals.  相似文献   

16.
This paper emphasises the importance of vitality diagnostics in relation to healthy ageing and prevention of age-associated diseases. Ageing, reducing the reserve capacity, decreases the adaptability of various systems and increases the risk of functional disorders. The early recognition and treatment of functional disorders in vitality diagnostics laboratories provides an opportunity to prevent or delay the onset of degenerative diseases related to advanced age.  相似文献   

17.
Ageing is intrinsically complex, being driven by multiple causal mechanisms. Each mechanism tends to be partially supported by data indicating that it has a role in the overall cellular and molecular pathways underlying the ageing process. However, the magnitude of this role is usually modest. The systems biology approach combines (i) data-driven modelling, often using the large volumes of data generated by functional genomics technologies, and (ii) hypothesis-driven experimental studies to investigate causal pathways and identify their parameter values in an unusually quantitative manner, which enables the contributions of individual mechanisms and their interactions to be better understood, and allows for the design of experiments explicitly to test the complex predictions arising from such models. A clear example of the success of the systems biology approach in unravelling the complexity of ageing can be seen in recent studies on cell replicative senescence, revealing interactions between mitochondrial dysfunction, telomere erosion and DNA damage. An important challenge also exists in connecting the network of (random) damage-driven proximate mechanisms of ageing with the higher level (genetically specified) signalling pathways that influence longevity. This connection is informed by actions of natural selection on the determinants of ageing and longevity.  相似文献   

18.
Ageing, long thought to be too infrequent to study effectively in natural populations, has recently been shown to be ubiquitous, even in the wild. A major challenge now is to explain variation in the rates of ageing within populations. Here, using 49 years of data from a population of great tits (Parus major), we show that offspring life‐history trajectories vary with maternal age. Offspring hatched from older mothers perform better early in life, but suffer from an earlier onset, and stronger rate, of reproductive senescence later in life. Offspring reproductive lifespan is, however, unaffected by maternal age, and the different life‐history trajectories result in a similar fitness payoff, measured as lifetime reproductive success. This study therefore identifies maternal age as a new factor underlying variation in rates of ageing, and, given the delayed trans‐generational nature of this effect, poses the question as to proximate mechanisms linking age‐effects across generations.  相似文献   

19.
Ageing and cancer have been associated with genetic and genomic changes.The identification of common signatures between ageing and cancer can reveal shared molecular mechanisms underlying them.In this study,we collected ageing-related gene signatures from ten published studies involved in six different human tissues and an online resource.We found that most of these gene signatures were tissuespecific and a few were related to multiple tissues.We performed a genome-wide examination of the expression of these signatures in various human tumor types,and found that a large proportion of these signatures were universally differentially expressed among normal vs.tumor phenotypes.Functional analyses of the highly-overlapping genes between ageing and cancer using DAVID tools have identified important functional categories and pathways linking ageing with cancer.The convergent and divergent mechanisms between ageing and cancer are discussed.This study provides insights into the biology of ageing and cancer,suggesting the possibility of potential interventions aimed at postponing ageing and preventing cancer.  相似文献   

20.
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The ‘disposable soma’ theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five ‘longevity’ genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号