首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gustatory Receptor 64 (Gr64) genes are a cluster of 6 neuronally expressed receptors involved in sweet taste sensation in Drosophila melanogaster. Gr64s modulate calcium signalling and excitatory responses to several different sugars. Here, we discover an unexpected nonneuronal function of Gr64 receptors and show that they promote proteostasis in epithelial cells affected by proteotoxic stress. Using heterozygous mutations in ribosome proteins (Rp), which have recently been shown to induce proteotoxic stress and protein aggregates in cells, we show that Rp/+ cells in Drosophila imaginal discs up-regulate expression of the entire Gr64 cluster and depend on these receptors for survival. We further show that loss of Gr64 in Rp/+ cells exacerbates stress pathway activation and proteotoxic stress by negatively affecting autophagy and proteasome function. This work identifies a noncanonical role in proteostasis maintenance for a family of gustatory receptors known for their function in neuronal sensation.

GR64 genes are a cluster of neuronally expressed gustatory receptors normally involved in taste sensation in Drosophila melanogaster. This study reveals a surprising role for these receptors in regulating proteostasis and cell survival in epithelial cells exposed to proteotoxic stress.  相似文献   

3.
4.
During the initial stages of carcinogenesis, transformation events occur in a single cell within an epithelial monolayer. However, it remains unknown what happens at the interface between normal and transformed epithelial cells during this process. In Drosophila, it has been recently shown that normal and transformed cells compete with each other for survival in an epithelial tissue; however the molecular mechanisms whereby “loser cells” undergo apoptosis are not clearly understood. Lgl (lethal giant larvae) is a tumor suppressor protein and plays a crucial role in oncogenesis in flies and mammals. Here we have examined the involvement of Lgl in cell competition and shown that a novel Lgl-binding protein is involved in Lgl-mediated cell competition. Using biochemical immunoprecipitation methods, we first identified Mahjong as a novel binding partner of Lgl in both flies and mammals. In Drosophila, Mahjong is an essential gene, but zygotic mahjong mutants (mahj −/−) do not have obvious patterning defects during embryonic or larval development. However, mahj −/− cells undergo apoptosis when surrounded by wild-type cells in the wing disc epithelium. Importantly, comparable phenomena also occur in Mahjong-knockdown mammalian cells; Mahjong-knockdown Madin-Darby canine kidney epithelial cells undergo apoptosis, only when surrounded by non-transformed cells. Similarly, apoptosis of lgl −/− cells is induced when they are surrounded by wild-type cells in Drosophila wing discs. Phosphorylation of the c-Jun N-terminal kinase (JNK) is increased in mahj −/− or lgl −/− mutant cells, and expression of Puckered (Puc), an inhibitor of the JNK pathway, suppresses apoptosis of these mutant cells surrounded by wild-type cells, suggesting that the JNK pathway is involved in mahj- or lgl-mediated cell competition. Finally, we have shown that overexpression of Mahj in lgl −/− cells strongly suppresses JNK activation and blocks apoptosis of lgl −/− cells in the wild-type wing disc epithelium. These data indicate that Mahjong interacts with Lgl biochemically and genetically and that Mahjong and Lgl function in the same pathway to regulate cellular competitiveness. As far as we are aware, this is the first report that cell competition can occur in a mammalian cell culture system.  相似文献   

5.
6.
Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD). Here we tested whether metabolic reprogramming towards aerobic glycolysis (“Warburg effect”) plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+), a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha) and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1) in cystic kidneys of Cy/+ rats compared with wild-type (+/+) rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG) on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day) for 5 weeks resulted in significantly lower kidney weights (-27%) and 2-kidney/total-body-weight ratios (-20%) and decreased renal cyst index (-48%) compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min), BUN (0.69±0.26 vs 0.40±0.10 ml/min) and uric acid (0.38±0.20 vs 0.21±0.10 ml/min), and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD.  相似文献   

7.
Human carcinomas are comprised of complex mixtures of tumor cells that are known to compete indirectly for nutrients and growth factors. Whether tumor cells could also compete directly, for example by elimination of rivals, is not known. Here we show that human cells can directly compete by a mechanism of engulfment called entosis. By entosis, cells are engulfed, or cannibalized while alive, and subsequently undergo cell death. We find that the identity of engulfing (“winner”) and engulfed (“loser”) cells is dictated by mechanical deformability controlled by RhoA and actomyosin, where tumor cells with high deformability preferentially engulf and outcompete neighboring cells with low deformability in heterogeneous populations. We further find that activated Kras and Rac signaling impart winner status to cells by downregulating contractile myosin, allowing for the internalization of neighboring cells that eventually undergo cell death. Finally, we compute the energy landscape of cell-in-cell formation, demonstrating that a mechanical differential between winner and loser cells is required for entosis to proceed. These data define a mechanism of competition in mammalian cells that occurs in human tumors.  相似文献   

8.
Reactive oxygen species generated in the process of energy production represent a major cause of oxidative DNA damage. Production of the oxidized guanine base, 8-oxo-guanine (8-oxoG), results in mismatched pairing with adenine and subsequently leads to G:C to T:A transversions after DNA replication. Our previous study demonstrated that Drosophila CG1795 encodes an ortholog of Ogg1, which is essential for the elimination of 8-oxoG. Moreover, the Drosophila ribosomal protein S3 (RpS3) possesses N-glycosylase activity that eliminates 8-oxoG in vitro. In this study, we show that RpS3 heterozygotes hyper-accumulate 8-oxoG in midgut cell nuclei after oxidant feeding, suggesting thatRpS3 is required for the elimination of 8-oxoG in Drosophila adults. We further showed that several muscle-aging phenotypes were significantly accelerated in RpS3 heterozygotes. Ogg1 is localized in the nucleus, while RpS3 is in the cytoplasm, closely associated with endoplasmic reticulum networks. Results of genetic analyses also suggest that these two proteins operate similarly but independently in the elimination of oxidized guanine bases from genomic DNA. Next, we obtained genetic evidence suggesting that CG42813 functions as the Drosophila ortholog of mammalian Mth1 in the elimination of oxidized dGTP (8-oxo-dGTP) from the nucleotide pool. Depletion of this gene significantly increased the number of DNA damage foci in the nuclei of Drosophila midgut cells. Furthermore, several aging-related phenotypes such as age-dependent loss of adult locomotor activities and accumulation of polyubiquitylated proteins in adult muscles were also significantly accelerated in CG42813-depleted flies. Lastly, we investigated the phenotype of adults depleted of CG9272, which encodes a protein with homology to mammalian Nth1 that is essential for the elimination of oxidized thymine. Excessive accumulation of oxidized bases was observed in the epithelial cell nuclei after oxidant feeding. In conclusion, three genes that prevent accumulation of oxidative DNA damage were identified in Drosophila.  相似文献   

9.
10.
11.
Inflammation is widely distributed in patients with Duchenne muscular dystrophy and ultimately leads to progressive deterioration of muscle function with chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzyme heme oxygenase-1 and inhibition of the NF-κB signaling pathway. However, the role of Nrf2 in the inflammation of dystrophic muscle remains unknown. To determine whether Nrf2 may counteract inflammation in dystrophic muscle, we treated 4-week-old male mdx mice with the Nrf2 activator sulforaphane (SFN) by gavage (2 mg/kg of body weight/day) for 4 weeks. The experimental results demonstrated that SFN treatment increased the expression of muscle phase II enzyme heme oxygenase-1 in an Nrf2-dependent manner. Inflammation in mice was reduced by SFN treatment as indicated by decreased infiltration of immune cells and expression of the inflammatory cytokine CD45 and proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the skeletal muscles of mdx mice. In addition, SFN treatment also decreased the expression of NF-κB(p65) and phosphorylated IκB kinase-α as well as increased inhibitor of κB-α expression in mdx mice in an Nrf2-dependent manner. Collectively, these results show that SFN-induced Nrf2 can alleviate muscle inflammation in mdx mice by inhibiting the NF-κB signaling pathway.  相似文献   

12.
13.
The Viable But Non Culturable (VBNC) state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to “resuscitate”. The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the “resuscitation” of VBNC cells during the VBNC state.  相似文献   

14.
We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1154Q/+). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1154Q/+ mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1154Q/+ mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1154Q/+ cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1154Q/+ mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1154Q/+ mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1154Q/+ mice and restored upon lithium treatment, might relate to lithium neuroprotective properties.  相似文献   

15.
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.  相似文献   

16.
The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycE(JP)). We demonstrated that the suppression of cycE(JP) by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycE(JP) is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.  相似文献   

17.
18.
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.  相似文献   

19.
20.
β-Glucan from Saccharomyces cerevisiae has been described to be effective antioxidants, but the specific antioxidation mechanism of β-glucan is unclear. The objectives of this research were to determine whether the β-glucan from Saccharomyces cerevisiae could regulate oxidative stress through the Dectin-1/Nrf2/HO-1 signaling pathway in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. In this study, we examined the effects of β-glucan on the enzyme activity or production of oxidative stress indicators in LPS-stimulated RAW264.7 cells by biochemical analysis and the protein expression of key factors of Dectin-1/Nrf2/HO-1 signaling pathway by immunofluorescence and western blot. The biochemical analysis results showed that β-glucan increased the LPS-induced downregulation of enzyme activity of intracellular heme oxygenase (HO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) while decreasing the production of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, immunofluorescence results showed that β-glucan can activate the nuclear factor erythroid 2-related factor 2 (Nrf2). The antioxidant mechanism study indicated that β-glucan activated dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors mediated Nrf2/HO-1 signaling pathway, thereby downregulating the production of ROS and thus produced the antioxidant effects in LPS-stimulated RAW 264.7 cells. In conclusion, these results indicate that β-glucan potently alleviated oxidative stress via Dectin-1/Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号