首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
This paper reviews a general framework for the modelling of longitudinal data with random measurement times based on marked point processes and presents a worked example. We construct a quite general regression models for longitudinal data, which may in particular include censoring that only depend on the past and outside random variation, and dependencies between measurement times and measurements. The modelling also generalises statistical counting process models. We review a non-parametric Nadarya-Watson kernel estimator of the regression function, and a parametric analysis that is based on a conditional least squares (CLS) criterion. The parametric analysis presented, is a conditional version of the generalised estimation equations of LIANG and ZEGER (1986). We conclude that the usual nonparametric and parametric regression modelling can be applied to this general set-up, with some modifications. The presented framework provides an easily implemented and powerful tool for model building for repeated measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号