首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to determine the effects of variety and storage duration on the nutrient digestibility and the digestible (DE) and metabolisable (ME) energy content in maize when fed to growing pigs. Four maize varieties (LS1, LS2, LS3 and LS4) were hand-harvested from the same growing area in China in early October of 2012. The samples were sun dried to about 14% moisture content and then stored in the warehouse of the Fengning Pig Experiment Base at China Agricultural University for 0, 3 or 10 months. Twenty-four barrows of about 33 kg body weight were used and allotted to a completely randomised block design with four diets and six replicate pigs per diet. Pigs were individually housed in metabolic crates. The four experimental diets were formulated by mixing 96.8% of each variety of maize with 3.2% vitamins and minerals. A 5-day collection period followed a 7-day diet acclimation period. The results indicated that the DE and ME contents of maize and the apparent total tract digestibility (ATTD) of organic matter (OM), dry matter, gross energy (GE), neutral detergent fibre, acid detergent fibre (ADF), crude protein (CP) and ether extract (EE) were significantly (p < 0.05) influenced by maize variety and storage duration. With an extension of storage duration from 0 to 10 months, the DE and ME of maize and the ATTD of OM, GE, ADF, CP and EE changed in a quadratic manner (p < 0.05), and 3 months of storage exceeded 0 months of storage by 1.84%, 1.43%, 0.31%, 0.32%, 15.37%, 2.11% and 5.02%, respectively. The DE, ME of maize and the ATTD of OM, GE, ADF, CP and EE decreased by 3.67%, 6.00%, 0.97%, 1.40%, 30.54%, 3.92% and 20.93%, respectively, at 10 months of storage compared to 3 months of storage. No interaction was observed between maize variety and storage duration in DE and ME contents in maize. In conclusion, under the conditions of this study, most of the nutrient digestibility and the DE and ME contents of maize increased from 0 to 3 months and decreased from 3 to 10 months.  相似文献   

2.
The impact of fibre level and fibre source on digestibility, gastrointestinal tract (GIT) development, total tract mean retention time (MRT) and growth performance was studied in indigenous Mong Cai (MC) and exotic Landrace × Yorkshire (LY) pigs. The diets were based on maize, rice bran, soyabean meal, fish meal and soyabean oil, and cassava residue (CR) or brewer's grain (BG) as fibrous ingredient sources in the high-fibre diets (HF) and were fed ad libitum. A low-fibre diet (LF), containing around 200 g NDF/kg dry matter (DM), was formulated without CR and BG as feed ingredients. The HF diets (HF-CR and HF-BG) were formulated to contain around 270 g NDF/kg DM. The experiment was arranged as a 2 × 3 factorial completely randomized design with six replications, and lasted 27 days. Increased dietary fibre level resulted in a reduction (P < 0.05) in average daily gain, digestibility of organic matter (OM), CP and gross energy (GE) at the ileum and in the total tract, and in MRT, and an increase (P < 0.05) in the feed conversion ratio and in the weight of the GIT (except for small intestine and caecum). The coefficients of total tract digestibility of fibre fractions were higher in HF diets than in the LF diet, with highest values for diet HF-CR, which had a high proportion of soluble non-starch polysaccharides. MC pigs had longer MRT of digesta than LY pigs (P < 0.05), resulting in higher digestibility at the ileum and in the total tract. Across diets and breeds, the total tract apparent digestibility of OM, CP and GE was positively related (R2 = 0.80 to 0.84) to the MRT of solids, whereas the MRT was negatively related to the DM intake (R2 = 0.60).  相似文献   

3.
This study assessed the long-term effects of feeding diets containing either a gelling fibre (alginate (ALG)), or a fermentable fibre (resistant starch (RS)), or both, on feeding patterns, behaviour and growth performance of growing pigs fed ad libitum for 12 weeks. The experiment was set up as a 2×2 factorial arrangement: inclusion of ALG (yes or no) and inclusion of RS (yes or no) in the control diet, resulting in four dietary treatments, that is, ALG−RS− (control), ALG+RS−, ALG−RS+, and ALG+RS+. Both ALG and RS were exchanged for pregelatinized potato starch. A total of 240 pigs in 40 pens were used. From all visits to an electronic feeding station, feed intake and detailed feeding patterns were calculated. Apparent total tract digestibility of energy, dry matter (DM), and CP was determined in week 6. Pigs’ postures and behaviours were scored from live observations in weeks 7 and 12. Dietary treatments did not affect final BW and average daily gain (ADG). ALG reduced energy and DM digestibility (P<0.01). Moreover, ALG increased average daily DM intake, and reduced backfat thickness and carcass gain : digestible energy (DE) intake (P<0.05). RS increased feed intake per meal, meal duration (P<0.05) and inter-meal intervals (P=0.05), and reduced the number of meals per day (P<0.01), but did not affect daily DM intake. Moreover, RS reduced energy, DM and CP digestibility (P<0.01). Average daily DE intake was reduced (P<0.05), and gain : DE intake tended to be increased (P=0.07), whereas carcass gain : DE intake was not affected by RS. In week 12, ALG+RS− increased standing and walking, aggressive, feeder-directed, and drinking behaviours compared with ALG+RS+ (ALG×RS interaction, P<0.05), with ALG−RS− and ALG−RS+ in between. No other ALG×RS interactions were found. In conclusion, pigs fed ALG compensated for the reduced dietary DE content by increasing their feed intake, achieving similar DE intake and ADG as control pigs. Backfat thickness and carcass efficiency were reduced in pigs fed ALG, which also showed increased physical activity. Pigs fed RS changed feeding patterns, but did not increase their feed intake. Despite a lower DE intake, pigs fed RS achieved similar ADG as control pigs by increasing efficiency in DE use. This indicates that the energy utilization of RS in pigs with ad libitum access to feed is close to that of enzymatically digestible starch.  相似文献   

4.
A digestibility and balance trial was carried out to study the nutrient digestibility and utilisation of protein and energy in wet distillers' solids derived from barley or soyabean meal. Eight growing pigs (30–72 kg liveweight) were used in an 8 × 6 cyclic change-over experimental design, in which eight experimental diets were arranged 2 × 2 × 2 factorially. The corresponding factors were the protein source (wet distillers' solids (DS) or soyabean meal (SBM)), protein supply (130 or 162 g crude protein (CP) kg−1 dry matter (DM)) and liquid lysine product supplementation.DS and SBM contained 565 g and 485 g CP kg−1 DM, respectively, and the respective lysine contents in CP were 39 g and 64 g per 160 g N. The liquid lysine product contained 527 g CP kg−1 DM and lysine in CP 193 g per 160 g N.No differences were found in the total tract digestibility of the nutrients or energy among diets composed of DS or SBM without lysine supplementation. Those diets with liquid lysine product supplementation, however, had opposite effects on the digestibility of the diets composed of the different protein sources. Lysine supplementation improved the digestibility of ash (P < 0.001), ether extract (P < 0.05) and crude carbohydrates (CCH) (P < 0.05) in diets composed of DS and adversely impaired the digestibility of organic matter and CCH (P < 0.05) in diets composed of SBM. The calculated digestibility of CP and gross energy were respectively 91.2% and 88.3% in SBM and 90.2% and 85.0% in DS. The digestible and calculated net energy contents were respectively 18.16 MJ kg−1 DM and 10.73 MJ kg−1 DM for SBM and 19.31 MJ kg−1 DM and 10.40 MJ kg−1 DM for DS.The pigs on the diets composed of DS had higher total (P < 0.001) and urea (P < 0.01) nitrogen (N) excretion in urine and lower daily retention of N (P < 0.001) than the pigs on the diets composed of SBM. The liquid lysine product supplementation of the diets decreased the total and urea N excretion in urine (P < 0.001) and improved the daily N retention (P < 0.001). With lysine supplementation, the protein utilisation of the diets composed of DS was improved to the level of the diets composed of SBM. No differences were observed in the utilisation of energy among the diets composed of different protein sources.It is concluded that DS is highly digestible, but its protein is efficiently utilised only with lysine supplementation.  相似文献   

5.
This experiment was conducted to define the sources of variation determining the energy content of barley and to develop a practical method to predict the digestible energy (DE) and metabolisable energy (ME) content of individual barley samples. The 19 barley samples used in this study were diverse varieties grown in different regions. The feeding experiment used 57 barrows (initial body weight 31.5 ± 3.2 kg) and was conducted over two consecutive periods (n = 6 per treatment) using a completely randomised design. During each period, the pigs were placed in metabolic crates for a 5-d total collection of faeces and urine following a 10-d adaptation to the diets. Among the barley samples, on dry matter (DM) basis the levels of neutral detergent fibre, acid detergent fibre (ADF), crude protein and starch ranged from 16.1% to 38.9%, 3.9% to 9.6%, 10.1% to 16.8% and 43.5% to 57.9%, respectively. The mean determined DE and ME contents amounted to 14.7 and 14.4 MJ/kg DM and varied among the samples by 1.85 MJ (13.6%) and 1.78 MJ (13.3%), respectively. The ADF fraction accounted for 73% and 76% of the total variation in the DE and ME content, respectively. It revealed that for prediction of the DE and ME contents in barley, equations had the best fit when the analysed contents of ADF, neutral detergent fibre and gross energy were used for calculation (R2 = 0.92). On the basis of the developed equations, the DE and ME contents of barley of different origin can be predicted with an acceptable accuracy when used as feed for growing pigs.  相似文献   

6.
Chemical composition and in vitro analyses were used to predict the nutritional value of 164 experimental rabbit diets evaluated in six European Laboratories under standardised conditions. The equations were mainly developed by stepwise regression analysis with over two third of the samples (111) used as calibration set. The other third (53) was used as validation set, and a study of the residues was undertaken to calculate the error of validation. Twenty three different equations have been proposed to predict the nutritional value (mainly gross energy digestibility, GEd; and digestible energy, DE) of rabbit diets, as a function of the available variables. Acid detergent fibre (ADFom) was the chemical variable most closely related to GEd and DE (R2 = 0.49 and 0.43, respectively, RSD = 0.033 and 0.62, for GEd and DE, respectively), but the in vitro DM digestibility (DMdinv) predicted the energy value with greater accuracy (R2 = 0.7, 0.52, for GEd and DE, respectively) and lower standard error (RSD = 0.025, 0.58 for GEd and DE, respectively). The latter equations were improved (R2 = 0.81, 0.74 for GEd and DE, respectively) when ether extract (EE) and Lignin (sa) were included. The use of additive equations that predict the DE from the main constituents that supply energy (protein, ether extract and carbohydrates) did not increase the precision, nor decrease the validation error respect to the simplest ones. Digestible Energy was predicted with a similar accuracy and validation errors than GEd. Crude protein digestibility (CPd) was better predicted from chemical analysis (Lignin (sa), R2 = 0.49) than for DMdinv. The further inclusion of CP slightly increased its coefficient of determination (0.53). The error of validation was relatively low (0.050 as average) and of the same magnitude than the RSD of the equations.  相似文献   

7.
The chemical composition inclusive amino acids (AAs) and the energy and protein value of three wheat, three maize and seven blend (mainly wheat) dried distillers grains and solubles (DDGS) were determined. The net energy for lactation (NEL) was derived from digestion coefficients obtained with sheep. The digestible protein in the intestines (DVE) and the degraded protein balance (OEB) were determined by nylon bag incubations in the rumen and the intestines of cannulated cows. Additional chemical parameters like acid-detergent insoluble CP (ADICP), protein solubility in water, in borate-phosphate buffer and in pepsin-HCl, in vitro digestibility (cellulase, protease, rumen fluid) and colour scores (L*, a*, b*) were evaluated as potential predictors of the energy and protein value. Compared to wheat DDGS (WDDGS), maize DDGS (MDDGS) had a higher NEL-value (8.49 v. 7.38 MJ/kg DM), a higher DVE-content (216 v. 198 g/kg DM) and a lower OEB-value (14 v. 66 g/kg DM). The higher energy value of MDDGS was mainly due to the higher crude fat (CFA) content (145 v. 76 g/kg DM) and also to better digestible cell-walls, whereas the higher protein value was mainly due to the higher percentage of rumen bypass protein (RBP: 69.8 v. 55.6%). The NEL-value of blend DDGS (BDDGS) was in between that of the pure DDGS-types, whereas its DVE-value was similar to MDDGS. Although lower in CP and total AAs, MDDGS provided a similar amount of essential AAs as the other DDGS-types. Lysine content was most reduced in the production of WDDGS and cysteine in MDDGS. Fat content explained 68.6% of the variation in NEL, with hemicellulose and crude ash as extra explaining variables. The best predictor for RBP as well as for OEB was the protein solubility in pepsin-HCl (R2=77.3% and 83.5%). Intestinal digestibility of RBP could best be predicted by ADF (R3=73.6%) and the combination of CFA and NDF could explain 60.2% of the variation in the content of absorbable microbial protein. The availability of AAs could accurately be predicted from the rumen bypass and intestinal digestibility of CP.  相似文献   

8.
On pig farms, a high proportion of the cost of production comes from feed costs. However, the use of alternative ingredients such as legume seeds may help to reduce this cost. In fact, legume seeds are an important source of essential amino acids (EAA) and can therefore be an alternative to oilseed meals. However, the accurate use of these legume seeds requires a precise knowledge of the standardized ileal digestibility (SID) of EAA, which may vary depending on its botanical variety. A meta-analysis was performed on a database compiling data from 41 studies published between 1981 and 2013 and 178 dietary treatments. Models of prediction of the SID of EAA as well as the dietary concentration of digestible standardized EAA (dEAA) were obtained, based on the chemical composition of ingredients reported in the publications. The effect of the type of legume seeds (faba bean, lupin, pea and soya bean), surgical procedures (T-cannula, re-entrant cannulas, post valve T-cannulas and ileo-rectal anastomosis), and BW of pigs (BW⩽25 kg BW>25 kg) were also tested in each model. Results showed that dietary CP and crude fibre (CF) were, respectively, the best predictors of each EAA SID for faba bean, lupin and pea (R2=0.42 to 0.89) and soya bean (R2=0.32 to 0.77). For the dEAA content, the best prediction models included dietary CP and ADF for faba bean, lupin and pea and soya bean, respectively, with R2 ranging from 0.66 to 0.98. Models developed in this study allow predicting the digestibility of EAA in these alternatives feedstuffs.  相似文献   

9.
The aim of the present study was to determine equations that predict ME in total mixed rations (TMR) based on routine methods. The ME content of 30 TMR for dairy cows was determined based on digestible crude nutrients obtained with wether sheep. Concentrations in the TMR (in g/kg DM) varied between 118 and 234 for crude protein, 26 and 48 for crude lipid, 131 and 250 for crude fibre, 281 and 488 for NDF, and 173 and 304 for ADF. Gas production ranged from 40.7 to 54.1 ml/200 mg DM, and enzymatically degraded organic matter from 652 to 800 g/kg DM. Digestibility [%] ranged from 68.6 to 84.0 for organic matter, from 55.6 to 84.3 for crude lipid, from 55.0 to 77.8 for crude fibre, from 57.6 to 77.0 for NDF and from 53.1 to 79.6 for ADF. ME ranged from 9.6 to 11.9 MJ/kg DM, and NEL from 5.7 to 7.4 MJ/kg DM. ME content was highly correlated with the concentration of both crude fibre and enzymatically degradable organic matter as well as with organic matter digestibility. A multiple regression equation based on crude fibre and crude lipid predicted ME with a reasonable goodness of fit (r2 = 0.81; sy.x = 2.4%). The inclusion of other nutrients, of neutral and acid detergent fibre, neither of gas production did improve the goodness of fit. The best prediction was achieved with inclusion of enzymatically degraded organic matter (r2 = 0.90; sy.x = 1.7%).  相似文献   

10.
Oilseed meal is an important source of essential amino acids (EAA) for livestock production. It is the second most important ingredient in pig feed after grains. Optimal use of these ingredients requires precise knowledge of amino acid standardized ileal digestibility (SID), which may vary depending on several factors including botanical variety or processing treatments. A meta-analysis was performed in order to derive models for predicting the SID of soybean, cotton and rapeseed meal EAA, based on chemical composition data such as CP, total concentration of each EAA and fibre (crude fibre, ADF and NDF) content. A database of 47 references (224 experimental treatments) was built. A model incorporating processing method of the meals (e.g. cold pressed, expeller pressed, solvent extracted), experimental surgical procedure (T-cannula, re-entrant cannula, post valve T-cannula and ileo-rectal anastomosis) and pig growth stage (BW⩽ or ⩾25 kg) was tested. Results indicated that neither processing nor BW affected EAA SID. NDF was the best predictor of SID (R2=0.944, 0.836, 0.779, 0.899 and 0.814, respectively, for Lys, Met, Thr, Trp and Val). The total EAA content was the best predictor of digestible content (g/kg diet) for each EAA (R2=0.990, 0.985, 0.977, 0.985 and 0.978, respectively, for Lys, Met, Thr, Trp and Val). This study shows that routine chemical analyses may be used to predict EAA digestibility with satisfactory accuracy.  相似文献   

11.
The accuracy and precision of the National Research Council (NRC), Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the digestible energy (DE) value of hays were determined from the results of 15 digestibility trials with natural grassland hays and 9 digestibility trials with lucerne hays that all met strict experimental and a tight corpus of methods. The hays were harvested in the temperate zone. They covered broad ranges of chemical composition and DE value. The INRA system was more accurate than the other two systems, with the bias between the predicted and measured DE values of natural grassland and lucerne hays averaging −0.11 and −0.04 MJ/kg DM with the INRA system, 0.34 and −0.70 MJ/kg DM with the NRC system and −0.50 and −1.69 MJ/kg DM with the GfE system (P < 0.05). However, the precision of the three systems was similar; the standard error of prediction corrected by bias was not significantly different (P > 0.05). The GfE system underestimated the DE value of hays, especially of lucerne hays. The differences between the predicted and measured DE values resulted mainly from the errors in the prediction of organic matter digestibility and energy digestibility for both natural grassland and lucerne hays. Discrimination according to botanical family (grassland v. lucerne) can help improve the prediction of the DE value of hays. The choice of appropriate predictive variables is discussed in the light of differences in chemical composition and digestibility of the various cell wall components of grassland and lucerne hays. Neutral detergent fiber (NDF) may thus be preferable to ADF in the prediction equation of the DE value of lucerne hays, whereas ADF and NDF may both be relevant for natural grassland hays.  相似文献   

12.
This study examined the effect of substituting dry wormwood (Artemisia sp.) for rice straw in sheep diets on intake and apparent digestibility in vivo, nitrogen (N) balance and ruminal fermentation characteristics. Four Corriedale×Polwarth sheep (51.7 ± 1.3 kg) were individually housed in metabolism cages and fed diets (ad. libitum) with a 70:30 forage to concentrate ratio (DM basis), in which the basal rice straw was substituted with 0 (Control), 30 (LW), 50 (MW) or 100 (HW) g/kg of dry wormwood. The experimental design was a 4×4 latin square design in which 10 days of dietary adaptation was followed by 6 days of total feces and urine collection in each period. Rumen fluid was collected from a stomach tube at −0.5, 0.5, 1, 2, 4, and 8 h after the morning feed on day 6 of each collection period and analyzed for volatile fatty acids (VFA). The intakes of dry matter (DM), organic matter intake (OM), crude protein (CP), ether extract (EE), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were higher (P<0.05) in sheep fed diets containing wormwood, than those fed the Control diet. Compared to the Control diet, CP digestibility was higher (P<0.05) in sheep fed MW and N intake, retained N, EE digestibility, urinary purine derivatives and microbial N yield were higher (P<0.05) in sheep fed diets, containing wormwood. Rumen pH was unaffected by treatment. Rumen NH3-N and VFA concentrations were similar across treatments except that most values for diets containing wormwood were higher (P<0.05) than those for the control diet within the first 2 h of feeding. The non-glucogenic acid ratio was also similar across Control, LW and MW treatments, but it was generally lower in MW versus the Control treatment. In conclusion, substituting wormwood for rice straw in the sheep diets increased feed intake, rumen fermentation, in vivo digestibility, N retention and microbial N yield, particularly at the medium and high levels of wormwood inclusion.  相似文献   

13.
The objective of this research was to compare values for digestible energy (DE) and metabolisable energy (ME) and apparent total tract digestibility (ATTD) of nutrients in 11 diets fed to both growing pigs and gestating sows. Three diets were based on corn, wheat or sorghum and eight diets were based on a combination of corn and soybean meal, canola meal, conventional distillers’ dried grains with solubles, low-fat distillers’ dried grains with solubles, corn germ meal, corn bran, wheat middlings or soybean hulls. A total of 88 gestating sows (252 ± 24.2 kg BW; parity two to six) and 88 growing barrows (40 ± 4.7 kg BW) were used and randomly allotted to the 11 diets with eight replicate sows or pigs per diet. Faecal and urine samples were collected for 4 d following a 19 d adaptation period. The DE, ME and ATTD of gross energy (GE), acid detergent fibre (ADF), neutral detergent fibre (NDF) and crude protein (CP) in the 11 diets were calculated. Gestating sows had greater (p < 0.05) ATTD of GE and CP and DE values for all diets compared with growing pigs. Gestating sows also had greater (p < 0.05) ME values than growing pigs for the three grain diets and the diets containing wheat middlings and soybean hulls. No differences were observed in ATTD of ADF and NDF between gestating sows and growing pigs for any of the diets, except that gestating sows had greater (p < 0.05) ATTD of NDF than growing pigs when they were fed the four protein diets. The ATTD of GE and CP and DE values in gestating sows may be predicted by using equations generated from the values of ATTD of GE and CP and DE values obtained in growing pigs. Results of this research indicate that ATTD values of CP and GE obtained in gestating sows are greater than the values obtained in growing pigs, but values for ATTD of ADF obtained in growing pigs are not different from values in gestating sows.  相似文献   

14.
Sodium hydroxide-treated or untreated wheat straw was included in a basal alfalfamaize diet at 0, 10, 20 and 40%. As the level of straw increased, the apparent digestibility of dry matter (DM) and organic matter (OM) by sheep, decreased linearly (P < 0.01), with a faster decrease (P < 0.05) for diets containing untreated straw. The digestibility of DM decreased by 0.22 and 0.41% and OM by 0.24 and 0.42% for treated and untreated straw diets, respectively, with each 1% increase of straw in the diets.Addition of treated straw increased (P < 0.05) digestibility of cell wall constituents (CWC), acid detergent fibre (ADF) and hemicellulose (HC). However, when untreated straw was added, the digestibility of HC was reduced, whereas the digestibility of CWC and ADF was dependent on the level of straw added. Increasing levels of NaOH-treated straw in the diets produced linear increases (P < 0.05) in digestibility of CWC, ADF and HC. However, significant (P < 0.05) linear or quadratic responses were not noted in the digestibility of CWC, ADF and HC with increasing levels of untreated straw in the diet. Apparent digestibility of crude protein was not affected by addition of either NaOH-treated or untreated straw to the diet.In general, although changes in nutrient digestibility of the basal component small, large changes in the digestibility of nutrients in the straw component were apparent and accounted for the major differences in digestibility of the diets. The absence of curvilinearity in the regression equations suggested that there were no associative effects.  相似文献   

15.
The objectives of this study were to determine the chemical composition, energy content and amino acid digestibility for corn gluten meals (CGM) and to develop prediction equations for estimating energy content and amino acid digestibility for growing pigs based on the chemical characteristics of these meals. The 15 CGM tested were obtained from seven Chinese companies. Experiment 1 was conducted to determine the digestible (DE) and metabolisable energy (ME) of the 15 CGM. The 18 growing barrows (38 ± 4 kg) were assigned to three 6 × 6 Latin square designs. The 15 CGM test diets were formulated to contain 19.20% CGM, which replaced 20% of the energy supplied by corn and crystalline amino acid in the basal diet. Experiment 2 was conducted to determine the apparent (AID) and standardised (SID) ileal digestibility of the crude protein (CP) and amino acids in the 15 CGM using chromic oxide as an inert marker. The 18 growing barrows (25 ± 2 kg) fitted with a simple T-cannula were assigned to three 6 × 6 Latin square designs. The 15 test diets contained 35% of one of the 15 CGM as the sole source of amino acids in the diet. The results showed a considerable variation in the chemical composition of CGM within and among plants. On dry matter basis, the DE and ME content of the CGM ranged from 18.8 to 21.0 MJ/kg and from 18.0 to 19.9 MJ/kg, respectively. There were no significant differences in the AID and SID for CP, arginine, lysine, glycine and proline among the 15 CGM, however, for all the other amino acids, significant differences were found for their AID and SID. With R 2 values exceeding 0.50, the DE of CGM can be predicted accurately from CP and fibre content and ME from starch and fibre content. Suitable prediction equations for SID of methionine were also developed.  相似文献   

16.
Dry matter (DM), protein, energy and fibre (ADF) intakes of Friesian and Ayrshire dairy heifers grazing a Rhodes grass pasture in Central Kenya were studied by indicator techniques for ten 22-day periods, each comprising 10 preliminary days and 12 collection days.Digestibility coefficients of DM, CP, GE and fibre were higher (P < 0.05) in the wetter periods and generally declined during the drier periods, as pasture matured. Intakes of DM, DCP and DE decreased (P < 0.05) as herbage matured. Average daily intake per kgW0.75 was 73.9-g DM, 4.1-g DCP, 31.8-g ADF and 167-kcal DE. Average daily gain (ADG) also varied (P < 0.05) with period and was positively related to intake of digestible dry matter, protein and energy. When conditions were wet, ADG was satisfactory at 480 g. In dry conditions, the heifers ingested 26.1-g DDM, 1.6-g DCP and 110-Kcal DE per kgW0.75 daily and gained at 200 g/day, and supplementation was deemed necessary to sustain an optimum ADG of 550 g. The factors which may have limited pasture intake by the grazing heifers are discussed. In general, a Chloris gayana pasture, grazed at an appropriate stocking-rate, will meet the requirements of dairy heifers for maintenance and, to a variable degree, those for growth in areas of Kenya with an annual rainfall of 1400 mm and with a high potential for increased cattle production.  相似文献   

17.
Ninety-five data of individual feedstuffs, for which information on chemical analyses and crude protein digestibility (CPD) was available, were subject to sequential multiple linear regression analysis employing CPD and digestible crude protein (DCP) as dependent variables and chemical analysis as independent variables. The feedstuffs were classed separately into dry forages (n=26), cereals and cereal by-products (n=29), protein concentrates (n=18) and by-products (n=22) groups. The procedure followed in each of the groups was to utilize: (1) the feedstuffs in which the Van Soest fiber and the Weende analysis were simultaneously available, and (2) all feedstuffs with data of the variables selected in the first step. The CP content was the best single predictor of the DCP content of feeds, the best equation in terms of R2 was obtained in the total group: DCP (g kg−1)=−34.67+0.876×CP (g kg−1), R2=0.948, RSD=7.36, n=93. The addition of the ash content to sequential analysis improved the accuracy of DCP prediction, increasing the R2 up to 0.960. Acid detergent fiber was the second independent variable selected in the cereals and by-products groups, the R2 obtained was, respectively, higher (0.969) and lower (0.895) than that of general equation. The correlations among the independent variables employed and CPD were low. Only when in the total group the nitrogen linked to acid detergent fiber (N–ADF) measurement was included as independent variable (n=11) a high R2 (0.905) was obtained. The N–ADF content that included the heat-damaged protein and the nitrogen associated with lignin could be adequate to estimate the indigestible protein content of feeds. However, more data points would be necessary to confirm its accuracy, taking into account the non-uniformity in the distribution of current data.  相似文献   

18.
Cellulose residue (cellufiber) from an ammonium base acid sulphite paper process was accepted by dairy heifers to the extent of 40% of the dry matter of an all-roughage ration when mixed with maize (Zea mays) silage at time of feeding. No adverse physiological effects were observed during digestion trials lasting 80 days in which cattle were given successively diets containing 10, 20, 30 or 40% of the ration dry matter as cellufiber. Apparent digestibility of crude protein decreased and digestibility of crude fibre and acid detergent fibre increased as the cellufiber level in the ration increased. Digestibility coefficients of dry matter, nitrogen-free extract and gross energy were unaffected.Uniformity of values for total digestible nutrients, digestible energy and metabolizable energy and, also, of the body weight gains by the test animals indicated only small differences in nutritive value between rations. However, estimated nutritive values of ration components indicated appreciable differences. The TDN of cellufiber was 56% which was approximately equal to that of alfalfa (Medicago sativa) hay and was 82% of the value of maize silage. However, the digestible energy value of cellufiber (1.93 Mcal/kg DM) was only 77% of alfalfa hay and 69% of maize silage. Similarly, its metabolizable energe value of 1.41 Mcal/kg DM was 69% of that of alfalfa hay and 61% of that of maize silage.  相似文献   

19.
Two juvenile, female African elephants (Loxodonta africana) were used in summer and winter trials to determine the apparent digestibility of timothy (Phleum pratense) hay. After 12–14 days of dietary adjustment, dry matter intake and fecal excretion were quantitatively measured for 7 days. Dry matter of timothy hay contained 8.6 and 7.7% crude protein, 57.3 and 44.0% acid detergent fiber, and 6.5 and 6.4% ash during the summer and winter trials, respectively. Estimates of apparent digestibility during summer and winter, respectively, were 39 and 35% for dry matter, 43 and 32% for gross energy (GE), 45 and 30% for crude protein (CP), and 36 and 24% for acid detergent fiber (ADF). While GE and CP digestibility estimates tended (P < .09) to be greater in the summer trial, only the digestibility of ADF was different (P < .05) between summer and winter. Dry matter intake was 1.4–1.6% of body weight (BW), providing an average of 144 kcal of digestible energy per kg BW0.75. This value is similar to that (155 kcal per kg BW0.75) used for estimating digestible energy requirements for maintenance of light-breed horses.  相似文献   

20.
The co-products from the industry are used to reduce costs in pig diets. However, the co-products used in pig diets are limited because of a high fibre content which is not digested by endogenous enzymes and is resistant to degradation in the small and large intestines. The aim of this study was to investigate digestibility of nutrients and energy, and energy utilisation in pigs fed diets with various soluble and insoluble dietary fibre (DF) from co-products. The experiment was performed as a 4 × 4 Latin square design (four diets and four periods) using four growing pigs (66.2 ± 7.8 kg) surgically fitted with a T-cannula in the end of the small intestine. The pigs were fed four experimental diets: low-fibre control (LF), high-fibre control (HF), high-soluble fibre (HFS) and high-insoluble fibre (HFI) diets. The apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of ash, organic matter, CP, fat, carbohydrates, starch and non-starch polysaccharides (NSP) divided into cellulose and soluble and insoluble non-cellulosic polysaccharide residues were measured using chromic oxide as marker. The recovery of total solid materials, organic matter and total carbohydrates in ileal digesta in pigs fed the HF and HFS diets was higher than in pigs fed LF and HFI, whereas recovery of organic matter and total carbohydrates in faecal materials in the HFS diet was lowest (P < 0.05). AID of organic matter, total carbohydrates and starch was lowest for HFS diet (P < 0.05). ATTD of organic matter and CP was higher for LF diet compared with other diets (P < 0.05), whereas total NSP, cellulose and non-cellulosic polysaccharides residues were highest for HFS diet (P < 0.05). Lactic acid in ileal digesta was influenced by dietary composition (P < 0.05) whereas neither type nor level of DF affected short chain fatty acids. The digestible energy, metabolisable energy, net energy and retained energy intake were similar among diets without influence of DF inclusion (P > 0.05). The metabolisable energy:digestible energy ratio was lower when feeding the HFS diet because of a higher fermentative methane loss. Faecal nitrogen and carbon were positively correlated with DM intake and insoluble DF in the diets (P < 0.05), but nitrogen and carbon (% of intake) were similar among diets. The present findings suggest that high-DF co-products can be used as ingredients of pig diets when features of DF are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号