首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.  相似文献   

2.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells.  相似文献   

3.
A new class of inhibitors of herpes simplex virus replication was found. The compounds under study are derived from condensed 1,2,4-triazolo[5,1-c][1,2,4]triazines and 1,2,4-triazolo[1,5-a]pyrimidines, structural analogues of natural nucleic bases. Antiherpetic activity and cytotoxicity of the compounds were studied. The corresponding triphosphates of several active compounds were prepared and tested as inhibitors of DNA synthesis catalyzed by herpes simplex virus polymerase. The potential mechanism of their action is blocking of DNA dependent DNA polymerase, a key enzyme of viral replication.  相似文献   

4.
Y T Hwang  B Y Liu  D M Coen    C B Hwang 《Journal of virology》1997,71(10):7791-7798
The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 or this change plus an aspartic acid-to-alanine at residue 581 in the Exo III motif exhibited defective or undetectable exonuclease activity, respectively, yet retained substantial polymerase activity. Despite the defects in exonuclease activity, the mutant polymerases were able to support viral replication in transient complementation assays, albeit inefficiently. Viruses replicated via the action of these mutant polymerases exhibited substantially increased frequencies of mutants resistant to ganciclovir. Furthermore, when the Exo III mutations were incorporated into the viral genome, the resulting mutant viruses displayed only modestly defect in replication in Vero cells and exhibited substantially increased mutation frequencies. The results suggest that herpes simplex virus can replicate despite severely impaired exonuclease activity and that the 3'-5' exonuclease contributes substantially to the fidelity of viral DNA replication.  相似文献   

5.
6.
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.  相似文献   

7.
The major DNA-binding protein, ICP8, encoded by herpes simplex virus is localized to the infected cell nucleus where it plays a role in viral DNA replication and control of viral gene expression. To identify the parts of the ICP8 protein that are important for its localization and functions, we have developed a system to test the ability of recombinant plasmids to express functional ICP8. A recombinant plasmid containing the wild-type ICP8 gene was transfected into cells. The cells were later infected with a temperature-sensitive ICP8 mutant virus at the nonpermissive temperature. Sufficient wild-type ICP8 was expressed from the transfected plasmid to complement the replication of the mutant virus. This provides a genetic system to test the properties of ICP8 expressed from mutagenized plasmids without the establishment of a stable cell line or the reintroduction of the ICP8 gene into the herpes simplex virus genome.  相似文献   

8.
Isopycnic centrifugation in CsCl gradients was used to quantify the incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine and 5-iodo-2'-deoxyuridine into herpes simplex virus type 1 DNA. A parallelism between the degree of incorporation into viral DNA and the inhibition of herpes simplex virus type I replication was found for both thymidine analogs. A concentration of 5-iodo-5'-amino-2',5'-dideoxyuridine approximately 100 times greater than 5-iodo-2'-deoxyuridine was required to achieve similar levels of antiviral activity. However, the inhibitory effects of these compounds are similar when compared with respect to the percent of substitution for thymidine in herpes simplex virus type I DNA. Damage to the viral DNA, as indicated by the presence of single or double-stranded breaks, was assessed by centrifugation in alkaline and neutral sucrose gradients. The incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine into herpes simplex virus type I DNA produced single and, to a lesser extent, double-stranded breaks in a dose-dependent manner. 5-Iodo-2'-deoxyuridine did not, however, induced DNA breakage. These data indicate that the additional presence of a phosphoramidate bond in the DNA produced the extensive damage detected under these conditions, but that such damage is not required for antiviral activity.  相似文献   

9.
The UL5 protein of herpes simplex virus type 1, one component of the viral helicase-primase complex, contains six sequence motifs found in all members of a superfamily of DNA and RNA helicases. Although this superfamily contains more than 20 members ranging from bacteria to mammalian cells and their viruses, the importance of these motifs has not been addressed experimentally for any one of them. In this study, we have examined the functional significance of these six motifs for the UL5 protein through the introduction of site-specific mutations resulting in single amino acid substitutions of the most highly conserved residues within each motif. A transient replication complementation assay was used to test the effect of each mutation on the function of the UL5 protein in viral DNA replication. In this assay, a mutant UL5 protein expressed from an expression clone is used to complement a replication-deficient null mutant with a mutation in the UL5 gene for the amplification of herpes simplex virus origin-containing plasmids. Eight mutations in conserved regions and three similar mutations in nonconserved regions of the UL5 gene were analyzed, and the results indicate that all six conserved motifs are essential to the function of UL5 protein in viral DNA replication; on the other hand, mutations in nonconserved regions are tolerated. These data provide the first direct evidence for the importance of these conserved regions in any member of the superfamily of DNA and RNA helicases. In addition, three motif mutations were introduced into the viral genome, and the phenotypic analyses of these mutants are consistent with results from the transient replication complementation assay. The ability of these three mutant UL5 proteins to form specific interactions with other members of the helicase-primase complex, UL8 and UL52, indicates that the functional domains required for replication activity of UL5 are separable from domains responsible for protein-protein interactions. It is anticipated that this type of structure-function analysis will lead to the identification of protein domains that contribute not only to the enzymatic activities of helicase or primase but also to protein-protein interactions within members of the complex.  相似文献   

10.
Arabinosyladenine, an established antiherpetic drug, was used to block herpes simplex virus type 1 DNA synthesis quantitatively in infected xeroderma pigmentosum cells. Kinetic analyses of viral polypeptides synthesized in the presence and absence of this drug revealed that there were at least six distinct kinetic classes of polypeptides. These differed in time of appearance after infection, time of maximum rate of synthesis, kinetics of turnoff, and sensitivity to arabinosyladenine. This study showed that arabinosyladenine had the following three main effects on herpes simplex virus type 1 gene expression. (i) The turnon of immediate early and delayed early polypeptides (kinetic classes 1 and 2) was retarded. (ii) The turnoff of early (immediate early and delayed early) polypeptides (classes 1 through 3) was delayed. (iii) The synthesis of late polypeptides (class 4 through 6) was inhibited by arabinosyladenine, with class 6 severely (80 to 90%) inhibited. The kinetic data presented here, along with the findings of other workers on the effects of inhibition of viral DNA synthesis, suggest that viral DNA replication is required for optimum synthesis of late viral polypeptides.  相似文献   

11.
Eight recombinant clones were obtained by insertion of BamHI fragments of herpes simplex type I viral DNA into a vector plasmid pUC19o. Of the obtained clones 5 were found to hybridize with herpes simplex type I and 2 viral DNA while 3 clones revealed a positive reaction with the Vero cells DNA. A constructed DNA-probe possessing the highest level of activity was selected for further studies. The probe is a BamHI fragment of herpes simplex type I viral DNA labelled with 32P dTTP. Probe sensitivity in blot hybridization is 10 pg for identification of type I viral DNA and 50 pg for type 2 viral DNA. The DNAs of cytomegalovirus and herpes zoster virus do not show positive signals with the probe. The increased sensitivity of the used dot hybridization as compared with biological or IEA antigen identification of the virus was confirmed with the clinical material from 59 patients with the different clinical manifestations of the herpes viral infection.  相似文献   

12.
A recombinant DNA of 5,150 base pairs was prepared containing the intact early region of polyoma virus, including the viral origin of replication and the structural sequences of the herpes simplex virus type 1 thymidine kinase gene. Although no thymidine kinase activity was detected when herpes structural sequences alone were transfected into cells, activity was produced when the structural gene followed the polyoma early region. The recombinant DNA was encapsidated into polyoma virions when cotransfected into mouse 3T6 cells with helper DNA from an early polyoma virus mutant. Herpes thymidine kinase activity was detected by a rapid in situ autoradiographic assay in which [125]iododeoxycytidine was utilized as a substrate for the viral but not the cellular enzyme.  相似文献   

13.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

14.
A de Bruyn Kops  D M Knipe 《Cell》1988,55(5):857-868
Eukaryotic DNA synthesis is thought to occur in multienzyme complexes present at numerous discrete sites throughout the nucleus. We demonstrate here that cellular DNA replication sites identified by bromodeoxyuridine labeling are relocated in cells infected with herpes simplex virus such that they correspond to viral prereplicative structures containing the HSV DNA replication protein, ICP8. Thus components of the cellular DNA replication apparatus are present at viral prereplicative sites. Mutant virus strains expressing defective ICP8 do not alter the pattern of host cell DNA replication sites, indicating that functional ICP8 is required for the redistribution of cellular DNA replication complexes. This demonstrates that a specific protein molecule can play a role in the organization of DNA replication proteins at discrete sites within the cell nucleus.  相似文献   

15.
Herpes simplex virus-infected cells contain large concatemeric DNA molecules arising from replication of the viral genome. The large concatemers are cleaved to generate unit-length molecules terminating at both ends with the a sequence. We have used constructed defective virus vectors (amplicons) derived from herpes simplex virus to study the mechanism of cleavage of viral DNA concatemers and the packaging of viral DNA into nucleocapsids. These studies revealed that (i) a 248-base-pair a sequence contained the signal(s) required for cleavage-packaging, (ii) the cleavage of viral DNA concatemers was coupled to packaging, (iii) the a sequence contained the information required for its own amplification, and (iv) cleavage-packaging occurred by a novel process involving the amplification of the a sequence.  相似文献   

16.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.  相似文献   

17.
We have previously shown that, when compared with either parent, a herpes simplex virus type 1/herpes simplex virus type 2 intertypic recombinant (R13-1) is attenuated by 10,000-fold with respect to neurovirulence in mice. Despite this, after intracranial inoculation, R13-1 replicated to titers of 10(5) PFU per brain. We present evidence that the restriction is specific for replication in neurons and have taken a three-step approach in determining the basis of the attenuation by (i) characterizing cellular tropism of the virus in both central and peripheral nervous systems, (ii) defining where in the viral replication cycle the restriction is manifest, and (iii) identifying the genetic basis of the restriction through marker rescue analysis. Following inoculation into the animal, R13-1 viral antigens predominate in nonneuronal cells, and the block to replication in neurons was found to be beyond the level of adsorption and penetration. Despite the restricted replication within neurons, the virus established a latent infection in spinal ganglia and could be reactivated by in vitro cocultivation of the ganglia. In studies carried out in cell culture, R13-1 was found to replicate normally in mouse embryo fibroblasts and primary mouse glial cells but was restricted by 1,000-fold in primary mouse neurons and PC12 cells. R13-1 appeared to produce normal levels of early RNA in these cells, but production of DNA and late RNA was less than that of the wild type. Marker rescue analysis localized the fragment responsible for restoring neurovirulence to UL5, a component of the origin-binding complex implicated in replication of the viral genome. Our results with this virus, with a cell-specific restriction, suggest that a neuron-specific component is involved in viral replication.  相似文献   

18.
The early events in herpes simplex virus infection were studied by means of radio-autography. The virus was rapidly taken up by the host cells and uncoated. Viral deoxyribonucleic acid (DNA) reached the nuclear sites of replication in 15 to 30 min after infection. The viral DNA occasionally associated with chromosomes or condensed chromatin but was more frequently found to be randomly distributed. Viral progeny appeared 3 hr after infection. These particles did not show any particular spatial relationship to the parental DNA. The morphological latent period lasted 2.5 hr.  相似文献   

19.
Cloned BglII fragment N (map units 0.58 to 0.625) of herpes simplex virus type 2 DNA has been shown to transform rodent cells to an oncogenic phenotype (Galloway and McDougall, J. Virol. 38: 749-760, 1981). RNA homologous to this fragment directs the synthesis of five polypeptides in a cell-free translation system. The approximate molecular weights of these proteins are 140,000, 61,000, 56,000, 35,000, and 23,500. The 35,000-dalton protein is the major species late in infection and is the only species detected before the onset of viral DNA replication. The arrangement of the sequences encoding these proteins along the herpes simplex virus type 2 genome was determined by hybridization of the RNA to cloned PstI fragment of BglII-N and to single-stranded DNA segments cloned into M13mp7. Both the hybridization experiments and immunoprecipitation with monoclonal antibodies suggested that the 140,000- and 35,000-dalton proteins are at least partially colinear and share antigenic determinants.  相似文献   

20.
Many viruses (herpes simplex virus type 1, polyomavirus, and human immunodeficiency virus type 1) require the activation of ataxia telangiectasia mutated protein (ATM) and/or Mre11 for a fully permissive infection. However, the longer life cycle of human cytomegalovirus (HCMV) may require more specific interactions with the DNA repair machinery to maximize viral replication. A prototypical damage response to the double-stranded ends of the incoming linear viral DNA was not observed in fibroblasts at early times postinfection (p.i.). Apparently, a constant low level of phosphorylated ATM was enough to phosphorylate its downstream targets, p53 and Nbs1. p53 was the only cellular protein observed to relocate at early times, forming foci in infected cell nuclei between 3.5 and 5.5 h p.i. Approximately half of these foci localized with input viral DNA, and all localized with viral UL112/113 prereplication site foci. No other DNA repair proteins localized with the virus or prereplication foci in the first 24 h p.i. When viral replication began in earnest, between 24 and 48 h p.i., there were large increases in steady-state levels and phosphorylation of many proteins involved in the damage response, presumably triggered by ATM-Rad3-related kinase activation. However, a sieving process occurred in which only certain proteins were specifically sequestered into viral replication centers and others were particularly excluded. In contrast to other viruses, activation of a damage response is neither necessary nor detrimental to infection, as neither ATM nor Mre11 was required for full virus replication and production. Thus, by preventing simultaneous relocalization of all the necessary repair components to the replication centers, HCMV subverts full activation and completion of both double-stranded break and S-phase checkpoints that should arrest all replication within the cell and likely lead to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号