首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A dynamic population of cytoplasmic F-actin was observed with electroporated rhodamine phalloidin (RP) staining in growing hyphae ofSaprolegnia ferax. This central actin population was distinct from the fibrillar peripheral network previously described in chemically fixed hyphae in that it was diffuse, pervaded the entire cytoplasm and was most concentrated in the central cytoplasm 8.4 m from the tip. The peripheral network did not stain with electroporated RP. The apical concentration of central cytoplasmic actin was only present in growing hyphae and developed prior to tip extension. It co-localized with the polarized distribution of mitochondria and endoplasmic reticulum in the tip, suggesting that it functions in positioning these organelles during tip growth. Within the central actin there was a consistent apical cleft which only occurred in growing hyphae and whose position predicted the direction of tip growth. This cleft was coincident with the known accumulation of apical wall vesicles, suggesting that it is either established by vesicle exclusion of the central actin network or is permeated by a portion of the in vivo unstained peripheral network. Photobleaching studies showed that in both growing and non-growing hyphae, cytoplasmic actin continually and rapidly moved from subapical regions to the tip where it accumulated. It mostly moved forward at the rate of tip growth, while some also left the tip, presumably to populate subapical regions.Abbreviations RP rhodamine phalloidin - F-actin filamentous actin - DIC Nomarski differential interference contrast - FITC fluorescein isothiocyanate  相似文献   

2.
Summary Filamentous actin in the apices of growing hyphae of the oomyceteSaprolegnia ferax is distributed such that it could compensate for weakness in the expanding apical cell wall and thus play a role in morphogenesis of the tip. The tapered extensible portion of the hyphal tip where the cell wall is plastic contains a cap of actin which differs in organization from the actin in subapical, inextensible regions of the hypha. Rapidly growing hyphae which are expected to have a longer plastic cell wall region contain longer actin caps. Furthermore, the weakest point in the hyphal apex, demonstrated by osmotic shock-induced bursting, was within the taper where the wall is plastic but never in the extreme apex where actin was most densely packed and presumably the strongest. Treatment of hyphae with cytochalasin E/dimethyl sulphoxide induced rapid changes in actin caps. Cap disruption was accompanied by transient growth rate increases, subsequent rounding and swelling of apices and a shift of osmotically induced burst points closer to the apex. These correlated changes are consistent with a role for the actin cap in tip morphogenesis. The association between regions of plasticity in the apical cell wall, the extent of the actin cap, the location of the weakest point in the apex and the effects of damage to the actin cap suggest that the cap functions to support the apex in regions where the cell wall is weak.Abbrevations CE cytochalasin E - DMSO dimethyl sulphoxide - RP rhodamine phalloidin Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

3.
INTanDUCTIONFungalhyphaeextendbytipgrowthandhaveahigherconceotration0fCa2 intheiraPicesthantheirbases,afactwhichispr0bablyrelatedt0theimp0rtentroleplayedbycalcinminestablishingandmaintainingapical0rganizati0n,mor-ph0g9nesis,and,grtiWth[1-6].Tounderstandthethefullcti0nofCa2 inhyphaltipgrbwth,'Ca' -bindingproteinsmustbeidentifiedandtheirflincti0nsdetermined.CaM,a,ubiquitousilltracellularCa' -bindingpr0teinwhichfuncti0nst0mediatemanyCa' -regulatedpr0cessesincells,naturallyhasbeenreceivedal…  相似文献   

4.
Summary Growing hyphae of the oomyceteSaprolegnia ferax wounded by impalement with a ca. 0.2 m diameter glass microelectrode normally respond within seconds with an apically directed cytoplasmic contraction followed by production of a plug which encases the electrode and occludes its recording of transmembrane potentials. This plug contains callose and Ca2+-associated membranes. To characterize the rapid wounding response, we disrupted specific filamentous (F) actin populations and Ca2+ regulation. Plug formation is inhibited by disruption of F-actin populations and low exogenous Ca2+ but not by inhibition of stretch-activated Ca2+ channels with Gd3+. Therefore, stretch-activated channels are not the immediate sensor. Instead, sensing may involve strain on the actin cytoskeleton which triggers the occlusion response. This wound response is qualitatively similar to the production of septa which isolate developing sporangia and seal severed hyphae, indicating the use of a normal basic cellular developmental system as a protective mechanism against environmental damage. The wound response is essential, since an inability to seal sites of mechanical damage is potentially catastrophic in acellular coenocytic organisms.Abbreviations APW artificial pond water - BAPTA 1,2-bis(orthzo-aminophenoxy)ethane-N,N,N,N-tetrapotassium acetate - CTC chlortetracycline - DIC Nomarski differential interference contrast microscopy - F-actin filamentous actin - LatB latrunculin B - PM plasma membrane - RP rhodamine-labeled phalloidin - SA channels stretch-activated channels  相似文献   

5.
Summary We have investigated in parallel the effects of different types of inhibitors on elongation of oat coleoptile cells in IAA and on the integrity of the longitudinally oriented actin-containing microfilaments present in control cells as detected by rhodamine phalloidin (RP) staining. Where growth was 50% inhibited by cytochalasin D (CD), we observed extensive to complete breakdown of the microfilaments (MFs) with the appearance of new RP staining in a few nuclei and markedly along the cross walls. When the CD-treated coleoptiles were held at 4°C the nuclei were uniformly strongly stained and cross wall staining was not seen, suggesting that translocation to the nuclei may be an intermediate step in final disposition of the actin. The divalent ions calcium and magnesium both inhibited growth in a dose dependent way, with calcium giving 50% inhibition at 65 mM and magnesium at 25 mM. KCl was not inhibitory and did not reverse the inhibition by divalent ions even at 250 mM. At 50% inhibition by either ion, the long MFs in many cells were replaced either by short fragmented MFs and small brightly staining granules (calcium) or by short usually twisted MFs and large, less intensely staining masses (magnesium). Iodoacetate at 2mM inhibited growth almost completely and resulted in short, fragmented, twisted or curled MFs in most of the cells. Abscisic acid also caused replacement of some MFs with faintly fluorescent bodies somewhat larger than those in CaCl2; occasionally granules similar to those in CaCl2 were also seen. Only mannitol and galactose, which inhibit growth by their osmotic effect, did not cause breakup of the MFs; indeed the MFs in mannitol appeared if anything wider and thicker. The results show that under the influence of three types of growth inhibitors the actin-containing MFs in the cells are broken down to different extents resulting in new structures. The results support the idea that the integrity of the MF bundles is linked, perhaps causally, to the elongation of theAvena cells.Abbreviations IAA indoleacetic acid - ABA abscisic acid - CD cytochalasin D - MF microfilaments - MFB microfilament bundles - RP rhodamine phalloidin  相似文献   

6.
Summary Newly synthesized chitin at the hyphal apex ofSchizophyllum commune was shown to be highly susceptible to chitinase degradation and solubilization by dilute mineral acid. With time this chitin became gradually more resistant to these treatments. With a combination of the shadow-cast technique and electron microscopic autoradiography it could be shown that this process occurred as the newly synthesized chitin moved into subapical parts of growing hyphae but also in non-growing apices which had ceased growth after incorporation of theN-acetyl[6-3H]glucosamine. These results are in agreement with a model which explains apical morphogenesis by assuming that the newly synthesized wall material at the apex is plastic due to the presence of individual polymer chains but becomes rigidified because of subsequent physical and chemical changes involving these polymers.Dedicated to Dr. A.Quispel, Professor of Botany at the University of Leiden, on occasion of his retirement.  相似文献   

7.
This study shows that there is only a negligible difference in actomyosin function in the in vitro motility assay among actin filaments labeled with Rhodamine phalloidin (RhPh), Alexa-488 phalloidin (APh), and biotin-XX phalloidin (BPh). Similar results were obtained at varying ionic strengths (0.02-0.13 M), in the presence of imidazole or 3-[N-morpholino]propanesulfonic acid (MOPS) buffer, and at varying MgATP concentrations (0.1-3 mM). If RhPh- and APh-labeled filaments were studied in a given flow cell, there was minimal variability in sliding velocity between the fluorophores (standard deviation of 3% of the absolute sliding velocity). The variability was considerably smaller than that between flow cells, allowing us to use dual labeling of different actin types and then apply analysis of variance to detect minor functional differences between them. Using this method, we could statistically verify a 4% difference (P<0.001) in sliding velocity (3mM Mg ATP) between cardiac and skeletal muscle actin. Suggested improvements of the method would readily allow the detection of even smaller differences. We discuss implications of the results for nanotechnological applications, understanding actomyosin function, and reducing experimental costs and the use of laboratory animals.  相似文献   

8.
The maintenance of growth of hyphae of Saprolegnia ferax was dependent on the presence of external Ca2+ and the growth rate increased with increased external Ca2+ up to 5 × 10−2 m Ca2+. When Ca2+ was greater than 5 × 10−2 m, growth rates decreased. Internal membrane-associated Ca2+ was localized with chlortetracycline. Internal Ca2+ became depleted in hyphae grown in the absence of Ca2+ and was increased in hyphae grown in high concentrations of Ca2+, showing that internal Ca2+ can be modulated by external Ca2+. However, the range of the internal change was not as great as the range of external concentration used, indicating that the hyphae are capable of regulating Ca2+ in the presence of a large concentration gradient. In the absence of external Ca2+, growth can occur for a limited time through use of internal Ca2+. The actin cytoskeleton was altered in hyphae grown in both high and low Ca2+. Hyphae grown in 10−3 m Ca2+ had more actin in their apical network and peripheral plaques of actin were further from the apex than in more slowly growing hyphae in 10−1 m and 0 Ca2+. The tips of hyphae growing in low Ca2+ also had a tendency to swell, giving these hyphae irregular shapes. Ca2+ is known to affect cell wall rigidity and the consistency of actin gels, two factors that can be expected to affect hyphal growth. External Ca2+ does play a role in hyphal growth possibly directly by acting on the cell wall and indirectly by altering internal Ca2+, thus affecting the actin cytoskeleton and possibly other growth processes.  相似文献   

9.
Summary The spatial organization of actin microfilaments during the asexual life cycle ofAchlya bisexualis has been examined by two methods. One is the standard procedure described by Heath [Eur J Cell Biol (1987) 44: 10–16], in which specimens are fixed with formaldehyde and then stained with rhodamine-phalloidin. In the other, introduced by Sonobe and Shibaoka [Protoplasma (1989) 148: 80–86], specimens are treated with the protein crosslinking agent MBS (m-maleimidobenzoyl-N-hydroxysuccinimide) before fixation and staining. Both methods display the actin-rich cleavage zones that outline the developing zoospores. However, in extending hyphae and young sporangia the images are significantly different. Specimens pretreated with MBS display more prominent axial microfilament cables than do standard specimens, while peripheral actin plaques are sparse or absent. The results suggest that actin microfilaments occur in several configurations, some of which may be obscured by the standard fixation procedure. Pretreatment with MBS, though probably subject to artefacts of its own, may help preserve some features that would otherwise be missed.Abbreviations Rh-Phal rhodamine phalloidin - MBS m-maleimidobenzoyl-N-hydroxysuccinimide - PIPES piperazine-N,N-bis [2-ethanesulfonic acid] - EGTA ethylene glycol-bis (-aminoethyl ether) N,N-tetraacetic acid - DMSO dimethyl sulfoxide  相似文献   

10.
T. M. Bourett  R. J. Howard 《Protoplasma》1991,163(2-3):199-202
Summary We have successfully localized fungal actin for the first time using immuno-electron microscopy and hyphal tips of the rice blast pathogenMagnaporthe grisea. Following ultrarapid freezing, samples were processed in a novel substitution fluid of 10% acrolein in anhydrous ethanol and embedded in LR White resin. A monoclonal anti-actin antibody, previously shown to recognizeM. grisea actin, bound specifically to filasomes concentrated in the peripheral cytoplasm of subapical regions, and to the core-region of the Spitzenkörper.Abbreviations IEM immuno-electron microscopy - TEM transmission electron microscopy  相似文献   

11.
Summary F-actin distribution during male meiosis in Magnolia soulangeana was studied by means of fluorescence microscopy following staining with rhodaminephalloidin. Actin filaments were observed to persist during all of the developmental stages of meiosis. Four main types of configurations were recognized: (1) peripheral filaments underlying the plasma membrane (cortical network); (2) filaments dispersed throughout the inner cytoplasm (central cytoplasmic network); (3) filaments associated with the meiotic spindles; (4) filaments associated with the phragmoplasts. The cortical and central cytoplasmic filaments exhibited different behaviours. Whereas the cortical network remained present in an apparently unchanged form during all of the meiotic stages, the central cytoplasmic filaments, although they never completely disappeared, were reduced and concentrated around the nucleus at the end of prophase. At metaphase, fluorescent spindles consisting of filament bundles running from pole to pole or being interrupted at the equatorial zone could be seen. At the end of both the first and second division of meiosis, fluorescent bands of filaments (disks) appeared at the level of the cell division planes (equatorial regions) where cleavage furrows were constituted. These cleavage furrows did not form when floral buds were cultivated in a cytochalasin-containing medium. Our results show that during microsporogenesis in M. soulangeana the actin filaments constitute a highly complex and dynamic system that is involved in particular in cytoplasm cleavage of the meiocytes.  相似文献   

12.
The continuously changing polar cytoplasmic organization during initiation and tip growth of root hairs is reflected by a dynamic redistribution of cytoskeletal elements. The small G-actin binding protein, profilin, which is known to be a widely expressed, potent regulator of actin dynamics, was specifically localized at the tip of root hairs and co-distributed with a diffusely fluorescing apical cap of actin, but not with subapical actin microfilament (MF) bundles. Profilin and actin caps were present exclusively in the bulge of outgrowing root hairs and at the apex of elongating root hairs; both disappeared when tip growth terminated, indicating a tip-growth mechanism that involves profilin-actin interactions for the delivery and localized exocytosis of secretory vesicles. Phosphatidylinositol-4,5-bisphosphate (PIP2), a ligand of profilin, was localized almost exclusively in the bulge and, subsequently, formed a weak tip-to-base gradient in the elongating root hairs. When tip growth was eliminated by the MF-disrupting inhibitor cytochalasin D, the apical profilin and the actin fluorescence were lost. Mastoparan, which is known to affect the PIP2 cycle, probably by stimulating phospholipases, caused the formation of a meshwork of distinct actin MFs replacing the diffuse apical actin cap and, concomittantly, tip growth stopped. This suggests that mastoparan interferes with the PIP2-regulated profilin-actin interactions and hence disturbs conditions indispensable for the maintenance of tip growth in root hairs. Received: 11 March 1999 / Accepted: 27 May 1999  相似文献   

13.
Taking the advantage of single-molecule imaging, our recent study has revealed surprisingly long processive movement of a Formin protein, mDia1, surfing along with the growing end of actin filaments in living cells. This finding provides direct evidence for the ability of Formins to function as processive cappers that has been postulated from several lines of evidence in biochemical studies. With nucleating filaments from the profilin-actin pool, Formins may effectively generate long actin filaments, and contribute to the generation of the specific actin-based structures, that is, the contractile ring in cytokinesis, actin stress fibers in animal cells, and yeast actin cables. Furthermore, Formins have the potential to function as actin polymerization-driven molecular motors. Although much remains to be tested about the role of this novel molecular mobilization mechanism, cells might utilize actin polymerization energy for cell shape change and/or trafficking via Formin motors.  相似文献   

14.
Summary Polarized tip-ward cytoplasmic contractions were induced in hyphae ofSaprolegnia ferax with ultraviolet microirradiations. These unidirectional contractions were similar in appearance and ionic requirements to those previously induced in hyphae ofBasidiobolus magnus, suggesting that the observed inherent cytoplasmic polarity is a general phenomenon. During growth the cytoplasm is continually moving forward with respect to the lateral cell wall and plasma membrane in order to maintain its position in the tip. These contractions may be an exaggerated form of this cytoplasmic migration. F-actin was most concentrated in the contracted cytoplasm, implying that it may be involved in generating the contraction. Contractions were enhanced by external Ca2+ and by irradiating the tip region which is rich in Ca2+ sequestering organelles, suggesting that flooding of the cytoplasm with Ca2+ caused the contractions. H+ did not affect contraction frequency. Neither the change in cytoplasmic consistency that preceded contraction, the contraction itself, nor the F-actin damage induced were confined to the microirradiated zone. This is in keeping with irradiation-induced damage to a network under tension or a flux of diffusible ions causing the response. Thus Ca2+ may regulate actin-myosin interactions that generate cytoplasmic migration.Abbreviations EGTA ethyleneglycol-bis-(-amino-ethyl ether) N, N-tetra-acetic acid - F-actin filamentous actin - PIPES piperazine-N N-bis-(2-ethanesulfonic acid) - wavelength  相似文献   

15.
Summary Within the infected cells of root nodules there is evidence of stratification and organisation of symbiosomes and other organelles. This organisation is likely to be important for the efficient exchange of nutrients and metabolites during functioning of the nodules. Using immunocytochemical labelling and confocal microscopy we have determined the organisation of cytoskeletal elements, micro tubules and actin microfilaments in soybean nodule cells, with a view to assessing their possible role in organelle distribution. Most microtubule arrays occurred in the cell cortex where they formed disorganised arrays in both uninfected and infected cells from mature nodules. In infected cells from developing nodules, parallel arrays of microtubules, transverse to the long axis of the cell, were observed. In incipient nodules, before release of rhizobia into the plant cells, the cells also had an array of microtubules which radiated from the nucleus into the cytoplasm. Three actin arrays were identified in the infected cells of mature nodules: an aster-like array which emanated from the surface of the nucleus, a cortical array which had an arrangement similar to that of the cortical microtubules, and, throughout the cytoplasm, an array of fine filaments which had a honeycomb arrangement consistent with a distribution between adjacent symbiosomes. Uninfected cells from mature nodules had only a random cortical array of actin filaments. In incipient nodules, the density of actin microfilaments associated with the nucleus and radiating through the cytoplasm was much less than that seen in mature infected cells. The cortical array of actin also differed, being composed of swirling configurations of filaments. After invasion of nodule cells by the rhizobia, the number of actin filaments emanating from the nucleus increased markedly and formed a network through the cytoplasm. Conversely, the cytoplasmic array in uninfected cells of developing nodules was identical to that in the cells of incipient nodules. The cytoplasmic network in infected cells of developing nodules is likely to be the precursor of the honeycomb array seen in mature nodule cells. We propose that this actin array plays a role in the spatial organisation of symbiosomes and that the microtubules are involved in the localisation of mitochondria and plastids at the cell periphery in the infected cells of root nodules.  相似文献   

16.
Summary Disagreement has arisen over the presence of actin-containing microfilaments (Mfs) in angiosperm generative cells and sperm (GSP). In order to address this issue, we subjected GSP of Tradescantia virginiana, Nicotiana tabacum and Rhododendron laetum to a series of localizations using different antiactins, rhodamine phalloidin and antimyosin. Coordinate staining with antitubulin and Hoechst 33258 defined the status of the microtubule (Mt) cytoskeleton and stages of generative cell division. Additional experiments utilized cytochalasin D (CD). In no instance could Mfs be detected in GSP of the three species. Instead, Mfs seen at the periphery of GSP appear to be continuous with vegetative Mfs and thus are in the vegetative cytoplasm. Mfs are not seen in the constriction zone of dividing T. virginiana generative cells, nor are they indicated in the phragmoplast of N. tabacum and R. laetum. Myosin localizations reveal punctate staining in the vegetative cytoplasm and a thin line of fluorescence around the the outside of the generative cell. While CD seems to delay generative cell division, cytokinesis still takes place. CD-induced Mf fragments are evident in the vegetative cytoplasm but not in GSP. The weight of evidence therefore indicates that GSP do not contain Mfs. The implications of this conclusion for the behavior of GSP and the mechanism of cytokinesis in dividing generative cells are considerable.  相似文献   

17.
The synthesis and intracellular distribution of actin were studied in isolated dictyate and metaphase II mouse oocytes by (1) sodium dodecyl sulfate-polyacrylamide gel electrophoresis of newly synthetized oocyte protein and (2) cytochemical F-actin labeling by fluorescent phalloidin. Unpermeabilized, fully grown oocytes bound phalloidin intensely at the level of the zona pellucida (ZP), such ZP-associated actin representing a significant portion of total actin found in these cells. In contrast, phalloidin binding to ZP was very low in growing oocytes and was undetectable in ovulated, metaphase II eggs. When ZP-associated actin of fully grown oocytes was removed by prolongedly exposing oocytes to α-chymotrypsin, the amount of newly synthesized actin displayed by cumulus-enclosed oocytes was reduced to a level comparable to that shown by oocytes isolated from granulosa cells. We demonstrate that ZP-associated actin belongs to granulosa cell processes that remain within the ZP as a consequence of oocyte isolation procedures. We conclude that actin synthesis of mouse oocytes is not regulated by granulosa cells.  相似文献   

18.
Colonies of the fungus Diplodia natalensis produce ample anastomoses which are visible 0.5–1.0 mm inwards of the colony's periphery. Anastomose formation as well as other morphogenetic features, were followed by autoradiography, lectin binding and application of the chitin synthase inhibitor polyoxin D.Hyphal tips and septae were strongly labelled by short pulses of [3H] N-acetyl-D-glucosamine ([3H]GlcNAc) and were showing marked fluorescence after exposure to fluorescein isothiocyanate (FITC) conjugated wheat germ agglutinin (WGA).The dynamics of wall formation was followed by pulse and chase as well as by pulse and wash treatments in which the colony was shortly exposed to [3H]GlcNAc and then freed from the radioactive chitin precursor.Application of the chitin synthase inhibitor polyoxin D caused hyphal tip swellings as well as inflations and balloons along the hyphae at sites of initial new outgrowths and anastomoses. These structures were strongly fluorescenting after FITC-WGA application, indicating imbalance of wall formation and wall lysis.FITC-WGA binding, [3H]GlcNAc labelling and/or exposure to polyoxin D, indicated a process of anastomose formation which starts with short outgrowths of two juxtapositioned hyphae and ends with a complete bridge formation.Abbreviations FITC fluorescein isothiocyanate - WGA wheat germ agglutinin - GlcNAc N-acetyl-D-glucosamine  相似文献   

19.
The cytoskeleton of human trabecular meshwork (HTM) cells is known to be altered in glaucoma and has been hypothesized to reduce outflow facility through contracting the HTM tissue. Latrunculin B (Lat-B) and Rho-associated protein kinase (ROCK) inhibitors disrupt the actin cytoskeleton and are in clinical trials as glaucoma therapeutics. We have previously reported a transient increase in HTM cell stiffness peaking at 90 min after Lat-B treatment with a return to pretreatment values after 270 min. We hypothesize that changes in actin morphology correlate with alterations in cell stiffness induced by Lat-B but this is not a general consequence of other cytoskeletal disrupting agents such as Rho kinase inhibitors. We treated HTM cells with 2 µM Lat-B or 100 µM Y-27632 and allowed the cells to recover for 30–270 min. While examining actin morphology in Lat-B treated cells, we observed striking cortical actin arrays (CAAs). The percentage of CAA positive cells (CPCs) was time dependent and exceeded 30% at 90 min and decreased after 270 min. Y-27632 treated cells exhibited few CAAs and no changes in cell stiffness. Together, these data suggest that the increase in cell stiffness after Lat-B treatment is correlated with CAAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号