首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capsular components of Cryptococcus neoformans induce several deleterious effects on T cells. However, it is unknown how the capsular components act on these lymphocytes. The present study characterized cellular and molecular events involved in immunoregulation of splenic CD4(+) T cells by C. neoformans capsular polysaccharides (CPSs). The results showed that CPSs induce proliferation of normal splenic CD4(+) T cells, but not of normal CD8(+) T or B lymphocytes. Such proliferation depended on physical contact between CPSs and viable splenic adherent cells (SAC) and CD40 ligand-induced intracellular signal transduction. The absence of lymphoproliferation after fixation of SAC with paraformaldehyde has discarded the hypothesis of a superantigen-like activation. The evaluation of a cytokine pattern produced by the responding CD4(+) T lymphocytes revealed that CPSs induce a dominant Th2 pattern, with high levels of IL-4 and IL-10 production and undetectable inflammatory cytokines, such as TNF-alpha and IFN-gamma. Blockade of CD40 ligand by relevant mAb down-regulated the CPS-induced anti-inflammatory cytokine production and abolished the enhancement of fungus growth in cocultures of SAC and CD4(+) T lymphocytes. Our findings suggest that CPSs induce proliferation and differentiation of normal CD4(+) T cells into a Th2 phenotype, which could favor parasite growth and thus important deleterious effects to the host.  相似文献   

2.
Immunity to the opportunistic fungus Cryptococcus neoformans is dependent on cell-mediated immunity. Individuals with defects in cellular immunity, CD4(+) T cells in particular, are susceptible to infection with this pathogen. In host defense against a number of pathogens, CD8(+) T cell responses are dependent upon CD4(+) T cell help. The goal of these studies was to determine whether CD4(+) T cells are required for the generation of antifungal CD8(+) T cell effectors during pulmonary C. neoformans infection. Using a murine intratracheal infection model, our results demonstrated that CD4(+) T cells were not required for the expansion and trafficking of CD8(+) T cells to the site of infection. CD4(+) T cells were also not required for the generation of IFN-gamma-producing CD8(+) T cell effectors in the lungs. In CD4(-) mice, depletion of CD8(+) T cells resulted in increased intracellular infection of pulmonary macrophages by C. neoformans, increasing the pulmonary burden of the infection. Neutralization of IFN-gamma in CD4(-)CD8(+) mice similarly increased macrophage infection by C. neoformans, thereby blocking the protection provided by CD8(+) T cells. Altogether, these data support the hypothesis that effector CD8(+) T cell function is independent of CD4(+) T cells and that IFN-gamma production from CD8(+) T cells plays a role in controlling C. neoformans by limiting survival of C. neoformans within macrophages.  相似文献   

3.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

4.
Anti-inflammation immunotherapy has been successfully applied for the treatment of autoimmune diseases. Mucosal vaccines against autoimmune disorders are beneficial by influencing the regulatory compartment of gut and systemic adaptive immune systems. A Salmonella vector expressing colonization factor Ag I (CFA/I), shown to behave as an anti-inflammatory vaccine, stimulates the production of CD4(+)CD25(+) T cells and regulatory cytokines. In this work, we queried whether Salmonella-CFA/I can protect DBA/1 mice from collagen-induced arthritis. The incidence of arthritis and cartilage loss in vaccinated DBA/1 mice was remarkably lower when compared with unprotected mice. Clinical findings were accompanied by the suppression of inflammatory cytokines TNF-alpha, IL-1beta, IL-6, and IL-27. Vaccination evoked a multi-tier response consisting of IL-4 producing Th2 cells, an increased production of TGF-beta by CD4(+) T cells, and suppression of collagen II-specific CD4(+) T cell proliferation. To assess the contribution of Salmonella-CFA/I-primed CD4(+) T cells, adoptive transfer studies with total CD4(+), CD4(+)CD25(-), or CD4(+)CD25(+) T cells were performed 15 days postchallenge. Mice receiving either subset showed reduced disease incidence and low clinical scores; however, mice receiving total CD4(+) T cells showed delayed disease onset by 10 days with reduced clinical scores, reduced IL-17 and IL-27, but enhanced IL-4, IL-10, IL-13, and TGF-beta. Inhibition of TGF-beta or IL-4 compromised protective immunity. These data show that Salmonella-CFA/I vaccination of DBA/1 mice protects against collagen-induced arthritis by stimulating TGF-beta- and IL-4-producing regulatory CD4(+) T cells.  相似文献   

5.
Mannoprotein from Cryptococcus neoformans induces protective response against a lethal challenge with this fungus or with Candida albicans. This phenomenon is largely related to early production of interleukin 12 (IL-12) and induction of T helper 1 response. Our study assesses whether the early absence of this critical cytokine could account for the incomplete activation of cellular response and whether the immune system compensates this imbalance. The results show that the neutralization of early IL-12 enhanced IL-18 production but decreased IFN-gamma secretion and IL-12R expression by splenic CD4 T cells. In contrast, IL-18R was not augmented despite an increase in IL-18 production. The co-stimulatory pathway was partially dysregulated because splenic macrophages showed unmodified B7-2, and a decrease of B7-1 expression. This dysregulation led to incomplete proliferative response of T cells in response to Cryptococcus neoformans and to increased fungal load in the brain 21 days post infection. The inability to dispose early IL-12, forced the immune system to compensate the imbalance and produced a series of long-lasting dysregulations involving the co-stimulatory pathway and T cell activation.  相似文献   

6.
Toll-like receptors (TLR) 2 and 4 are cell surface receptors that in association with CD14 enable phagocytic inflammatory responses to a variety of microbial products. Activation via these receptors triggers signaling cascades, resulting in nuclear translocation of NF-kappa B and a proinflammatory response including TNF-alpha production. We investigated whether TLRs participate in the host response to Cryptococcus neoformans glucuronoxylomannan (GXM), the major capsular polysaccharide of this fungus. Chinese hamster ovary fibroblasts transfected with human TLR2, TLR4, and/or CD14 bound fluorescently labeled GXM. The transfected Chinese hamster ovary cells were challenged with GXM, and activation of an NF-kappa B-dependent reporter construct was evaluated. Activation was observed in cells transfected with both CD14 and TLR4. GXM also stimulated nuclear NF-kappa B translocation in PBMC and RAW 264.7 cells. However, stimulation of these cells with GXM resulted in neither TNF-alpha secretion nor activation of the extracellular signal-regulated kinase 1/2, p38, and stress-activated protein kinase/c-Jun N-terminal kinase mitogen-activated protein kinase pathways. These findings suggest that TLRs, in conjunction with CD14, function as pattern recognition receptors for GXM. Furthermore, whereas GXM stimulates cells to translocate NF-kappa B to the nucleus, it does not induce activation of mitogen-activated protein kinase pathways or release of TNF-alpha. Taken together, these observations suggest a novel scenario whereby GXM stimulates cells via CD14 and TLR4, resulting in an incomplete activation of pathways necessary for TNF-alpha production.  相似文献   

7.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

8.
CCR2 and its major ligand, chemokine ligand 2 (CCL2)/monocyte chemotactic protein-1, have been found to influence T1/T2 immune response polarization. Our objective was to directly compare the roles of CCR2 and CCL2 in T1/T2 immune response polarization using a model of pulmonary Cryptococcus neoformans infection. Either deletion of CCR2 or treatment of wild-type mice with CCL2 neutralizing Ab produced significant and comparable reductions in macrophage and T cell recruitment into the lungs following infection. Both CCL2 neutralization and CCR2 deficiency resulted in significantly diminished IFN-gamma production, and increased IL-4 and IL-5 production by lung leukocytes (T1 to T2 switch), but only CCR2 deficiency promoted pulmonary eotaxin production and eosinophilia. In the lung-associated lymph nodes (LALN), CCL2-neutralized mice developed Ag-specific IFN-gamma-producing cells, while CCR2 knockout mice did not. LALN from CCR2 knockout mice also had fewer MHCII(+)CD11c(+) and MHCII(+)CD11b(+) cells, and produced significantly less IL-12p70 and TNF-alpha when stimulated with heat-killed yeast than LALN from wild-type or CCL2-neutralized mice, consistent with a defect in APC trafficking in CCR2 knockout mice. Neutralization of CCL2 in CCR2 knockout mice did not alter immune response development, demonstrating that the high levels of CCL2 in these mice did not play a role in T2 polarization. Therefore, CCR2 (but not CCL2) is required for afferent T1 development in the lymph nodes. In the absence of CCL2, T1 cells polarize in the LALN, but do not traffic from the lymph nodes to the lungs, resulting in a pulmonary T2 response.  相似文献   

9.
The human pathogenic fungus Cryptococcus neoformans exhibits the phenomenon of phenotypic switching, a process that generates variant colonies that can differ in morphology, virulence and other characteristics such as capsular glucuronoxylomannan (GXM) size and structure. A previous study established that mucoid colony (MC) variants of C. neoformans were more virulent and elicited a different inflammatory response than smooth colony (SM) variants. In this study, we investigated the interaction of cells from MC and SM variants and their respective GXMs with human T cells and monocytes. Specifically, we measured CD40, CD80 and CD86 expression, lymphoproliferation and interleukin (IL)-4, IL-10, interferon (IFN)-gamma and IL-12Rbeta2 expression in the presence and absence of variant cells and their GXMs. For some immune parameters, both MC and SM strains produced similar results, in particular no differences were observed in IL-4 induction. However, for other critical parameters, including CD86 expression, lymphoproliferation and IL-10 production, the MC variant had effects that can be expected to impair the immune response. Hence, a single C. neoformans strain can elicit several different immune responses depending on the colony type expressed, and this is unlikely to be accounted for by differences in phagocytosis only. The results provide a potential explanation for the higher virulence of the MC variant based on the concept that these cells inhibit the development of a vigorous immune response. Furthermore, the results suggest a mechanism by which phenotypic switching can generate variants able to evade the immune response.  相似文献   

10.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

11.
12.
Glucagon-like peptide 2 (GLP-2) is an important intestinal growth factor with anti-inflammatory activity. We hypothesized that GLP-2 decreases mucosal inflammation and the associated increased epithelial proliferation by downregulation of Th1 cytokines attributable to reprogramming of lamina propria immune regulatory cells via an interleukin-10 (IL-10)-independent pathway. The effects of GLP-2 treatment were studied using the IL-10-deficient (IL-10(-/-)) mouse model of colitis. Wild-type and IL-10(-/-) mice received saline or GLP-2 (50 microg/kg sc) treatment for 5 days. GLP-2 treatment resulted in significant amelioration of animal weight loss and reduced intestinal inflammation as assessed by histopathology and myeloperoxidase levels compared with saline-treated animals. In colitis animals, GLP-2 treatment also reduced crypt cell proliferation and crypt cell apoptosis. Proinflammatory (IL-1beta, TNF-alpha, IFN-gamma,) cytokine protein levels were significantly reduced after GLP-2 treatment, whereas IL-4 was significantly increased and IL-6 production was unchanged. Fluorescence-activated cell sorting analysis of lamina propria cells demonstrated a decrease in the CD4(+) T cell population following GLP-2 treatment in colitic mice and an increase in CD11b(+)/F4/80(+) macrophages but no change in CD25(+)FoxP3 T cells or CD11c(+) dendritic cells. In colitis animals, intracellular cytokine analysis demonstrated that GLP-2 decreased lamina propria macrophage TNF-alpha production but increased IGF-1 production, whereas transforming growth factor-beta was unchanged. GLP-2-mediated reduction of crypt cell proliferation was associated with an increase in intestinal epithelial cell suppressor of cytokine signaling (SOCS)-3 expression and reduced STAT-3 signaling. This study shows that the anti-inflammatory effects of GLP-2 are IL-10 independent and that GLP-2 alters the mucosal response of inflamed intestinal epithelial cells and macrophages. In addition, the suggested mechanism of the reduction in inflammation-induced proliferation is attributable to GLP-2 activation of the SOCS-3 pathway, which antagonizes the IL-6-mediated increase in STAT-3 signaling.  相似文献   

13.
The brain represents a significant barrier for protective immune responses in both infectious disease and cancer. We have recently demonstrated that immunotherapy with anti-CD40 and IL-2 can protect mice against disseminated Cryptococcus infection. We now applied this immunotherapy using a direct cerebral cryptococcosis model to study direct effects in the brain. Administration of anti-CD40 and IL-2 significantly prolonged the survival time of mice infected intracerebrally with Cryptococcus neoformans. The protection was correlated with activation of microglial cells indicated by the up-regulation of MHC II expression on brain CD45(low)CD11b(+) cells. CD4(+) T cells were not required for either the microglial cell activation or anticryptococcal efficacy induced by this immunotherapy. Experiments with IFN-gamma knockout mice and IFN-gammaR knockout mice demonstrated that IFN-gamma was critical for both microglial cell activation and the anticryptococcal efficacy induced by anti-CD40/IL-2. Interestingly, while peripheral IFN-gamma production and microglial cell activation were observed early after treatment, negligible IFN-gamma was detected locally in the brain. These studies indicate that immunotherapy using anti-CD40 and IL-2 can augment host immunity directly in the brain against C. neoformans infection and that IFN-gamma is essential for this effect.  相似文献   

14.
The capsule of Cryptococcus neoformans, the principal virulence factor of this fungus, is composed primarily of polysaccharide. The predominant component of the polysaccharide capsule is glucuronoxylomannan (GXM), a compound with potent immunoregulatory properties. GXM is bound and internalized by natural immune cells affecting innate and subsequent adaptive immune response. The cellular pattern recognition receptors involved in GXM binding include toll-like receptor (TLR)4, CD14, TLR2, CD18, Fc gamma receptor II (FcgammaRPi). This multiple cross-linking leads to a suppressive outcome that is arrested and even reversed by protective antibodies to GXM. This review analyzes the immunosuppressive effects induced by capsular material, considering its pattern recognition receptors, and dissects the mechanism of monoclonal antibody shifting to immunoactivation.  相似文献   

15.
We determined whether the absence of IL-10 in mice influenced protective and memory immunity to Histoplasma capsulatum. IL-10(-/-) mice cleared primary and secondary infection more rapidly than wild-type controls. Administration of mAb to TNF-alpha or IFN-gamma, but not GM-CSF, abrogated protection in naive IL-10(-/-) mice; mAb to TNF-alpha, but not IFN-gamma or GM-CSF, subverted protective immunity in secondary histoplasmosis. The inflammatory cell composition in IL-10(-/-) mice was altered in those given mAb to IFN-gamma or TNF-alpha. More Gr-1(+) and Mac-3(+) cells were present in lungs of IL-10(-/-) mice given mAb to IFN-gamma, and treatment with mAb to TNF-alpha sharply reduced the number of CD8(+) cells in lungs of IL-10(-/-) mice. We ascertained whether the lack of IL-10 modulated memory T cell generation or the protective function of cells. The percentage of CD3(+), CD44(high), CD62(low), and IFN-gamma(+) cells in IL-10(-/-) mice was higher than that of wild-type at day 7 but not day 21 or 49 after immunization. Fewer splenocytes from immunized IL-10(-/-) mice were required to mediate protection upon adoptive transfer into infected TCR alphabeta(-/-) mice. Hence, deficiency of IL-10 confers a salutary effect on the course of histoplasmosis, and the beneficial effects of IL-10 deficiency require endogenous TNF-alpha and/or IFN-gamma. Memory cell generation was transiently increased in IL-10(-/-) mice, but the protective function conferred by cells from these mice following immunization is strikingly more vigorous than that of wild-type.  相似文献   

16.
Innate immune cells mediate a first line of defense against pathogens and determine the nature of subsequent acquired immune responses, mainly by producing profound amounts of cytokines. Given these diverse tasks, it is predictable that defective NK and gammadelta(+) T cell responses could be the underlying mechanism for the immunological alterations observed in atopic dermatitis (AD). Indeed, the frequencies of circulating NK cells and gammadelta(+) T cells were profoundly reduced in AD patients. They also displayed a defective ability to sustain TNF-alpha and IFN-gamma, but not IL-4, production after in vitro stimulation, and the defect was restricted to innate immune cells. Surprisingly, on the depletion of CD14(+) monocytes, this selective impairment of TNF-alpha and IFN-gamma production was restored to levels comparable to that observed in controls. Release of IL-10 from monocytes was not a major mechanism of the NK and gammadelta(+) T cell dysfunction. Apoptosis as revealed by annexin V binding, was preferentially observed in NK and gammadelta(+) T cells from AD patients when stimulated in the presence of monocytes, and depletion of monocytes significantly protected these cells from apoptotic cell death. Preferential apoptosis of NK cells by activated monocytes in AD patients was cell-contact-dependent. These results indicate that, once NK and gammadelta(+) T cells in AD patients are in immediate contact with activated monocytes, these cells are specifically targeted for apoptosis, leading to the reduced type 1 cytokine production, thereby directing subsequent acquired immune responses toward a type-2 pattern and increasing susceptibility to infection.  相似文献   

17.
Although IL-10 acts as an inhibitory cytokine for APC and CD4(+) T cell function, its effects on CD8(+) T cells are unclear. Additionally, little is known about whether initial priming in the presence of IL-10 can have long-lasting effects and influence subsequent CD8(+) T cell responses that occur in the absence of the cytokine. In the present study, we clarified the role of IL-10 during primary responses and examined whether exposure to IL-10 during initial priming of CD8(+) T cells impacted secondary responses. To determine the effect of IL-10 on Ag-specific T cell responses, peptide-pulsed IL-10R2(-/-) splenic dendritic cells were used to prime T cells from OT-I CD8(+) TCR transgenic mice. During the primary response, the presence of IL-10 resulted in enhancement of CD8(+) T cell numbers without detectable alterations in the kinetics or percentage of cells that underwent proliferation. A modest increase in survival, not attributable to Bcl-2 or Bcl-x(L), was also observed with IL-10 treatment. Other parameters of CD8(+) T cell function, including IL-2, IFN-gamma, TNF-alpha, and granzyme production, were unaltered. In contrast, initial exposure to IL-10 during the primary response resulted in decreased OT-I expansion during secondary stimulation. This was accompanied by lowered IL-2 levels and reduced percentages of proliferating BrdU(+) cells and OT-I cells that were CD25(high). IFN-gamma, TNF-alpha, and granzyme production were unaltered. These data suggest that initial exposure of CD8(+) T cells to IL-10 may be temporarily stimulatory; however, programming of the cells may be altered, resulting in diminished overall responses.  相似文献   

18.
Although chronic immune activation correlates with CD4(+) T cell loss in HIV infection, an understanding of the factors mediating T cell depletion remains incomplete. We propose that reduced expression of CD127 (IL-7 receptor alpha chain, IL-7Ralpha), induced by immune activation, contributes to CD4(+) T cell loss in HIV infection. In particular, loss of CD127 on central memory CD4(+) T cells (T(CM)) severely restrains the regenerative capacity of the memory component of the immune system, resulting in a limited ability to control T cell homeostasis. Studies from both pathogenic and controlled HIV infection indicate that the containment of immune activation and preservation of CD127 expression are critical to the stability of CD4(+) T cells in infection. A better understanding of the factors regulating CD127 expression in HIV disease, particularly on T(CM) cells, might unveil new approaches exploiting the IL-7/IL-7R receptor pathway to restore T cell homeostasis and promote immune reconstitution in HIV infection.  相似文献   

19.
CBA/J mice are resistant to Leishmania major and susceptible to Leishmania amazonensis. Early events determine infection outcome. Until now, PIV (in vitro priming) immune response to L. amazonensis has not been assessed. Herein, we have shown that compared to L. major, L. amazonensis induced higher parasite burden associated to similar IL-4, IFN-gamma, and TNF-alpha mRNA expressions and IFN-gamma and IL-10 levels. Although similar amounts of IL-10 were detected, the frequency of intracellular IL-10 positive B cells was enhanced in spleen cells stimulated with anti-CD3/anti-CD28, or anti-CD3/anti-CD28 and L. amazonensis, compared to L. major-stimulation. Interestingly, IL-10- producing B cells were reduced in response to anti-CD3/anti-CD28 stimulation combined with L. major compared to the other groups. L. amazonensis may favor T regulatory cell development, since 40% of all the CD4+CD25+ were CD25(high) cells. These data suggest that in PIV, susceptibility to L. amazonensis is not related to Th cell polarization, but to the presence and activity of regulatory T and B cells.  相似文献   

20.
Human filarial parasites cause chronic infection associated with long-term down-regulation of the host's immune response. We show here that CD4+ T cell regulation is the main determinant of parasite survival. In a laboratory model of infection, using Litomosoides sigmodontis in BALB/c mice, parasites establish for >60 days in the thoracic cavity. During infection, CD4+ T cells at this site express increasing levels of CD25, CTLA-4, and glucocorticoid-induced TNF receptor family-related gene (GITR), and by day 60, up to 70% are CTLA-4(+)GITR(high), with a lesser fraction coexpressing CD25. Upon Ag stimulation, CD4(+)CTLA-4(+)GITR(high) cells are hyporesponsive for proliferation and cytokine production. To test the hypothesis that regulatory T cell activity maintains hyporesponsiveness and prolongs infection, we treated mice with Abs to CD25 and GITR. Combined Ab treatment was able to overcome an established infection, resulting in a 73% reduction in parasite numbers (p < 0.01). Parasite killing was accompanied by increased Ag-specific immune responses and markedly reduced levels of CTLA-4 expression. The action of the CD25(+)GITR+ cells was IL-10 independent as in vivo neutralization of IL-10R did not restore the ability of the immune system to kill parasites. These data suggest that regulatory T cells act, in an IL-10-independent manner, to suppress host immunity to filariasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号