首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1. Intralipid is a suitable substrate for measuring lipoprotein lipase activity in the presence of other triacylglycerol lipases in heart and myocytes. 2. Triacylglycerol lipase activity in heart and myocytes was increased 10-fold in the presence of serum at pH 7.4 and 8.1. The serum-stimulated activity in myocytes was 95% inhibited by saturating concentrations of antiserum to lipoprotein lipase. 3. Both heparin-releasable and non-releasable lipoprotein lipase fractions had similar Km values for Intralipid and a similar pattern of inhibition by high density lipoprotein but different responses to heparin. 4. Isoproterenol did not alter lipoprotein lipase activity in cardiac myocytes.  相似文献   

2.
A triacylglycerol lipase in a mitochondrial fraction isolated from yeast (Saccharomyces cerevisiae) has been characterized and the hydrolysis studied kinetically using an insoluble artificial triacylglycerol suspension. 1. The triacylglycerol was hydrolyzed almost completely to fatty acids and glycerol. The lipase activity was inhibited by potassium fluoride and the sodium salts of -chloride, -glycocholate and -pyrophosphate as well as by protamine sulfate but at concentrations much too high to indicate that the lipase is a non specific esterase or a lipoprotein lipase. Also parachloromercuribenzoate inhibited the lipase activity. Inhibitory effect of fatty acid was observed at concentrations above 1mM. This inhibition may provide a regulatory mechanism of the lipase in vivo. 2. On the day of isolation the lipase activity of intact mitochondria at pH 7.5 and 30 degrees C was 400 nmol free fatty acid -h-1 - mg-1 at a triacylglycerol concentration of 9.0 mM. Sonication of the mitochondria increased the activity 2-3 fold. Freezing of the mitochondria also activated the lipase and this activation was dependent upon the freezing method, the concentration of mitochondrial protein and the presence of bovine serum albumin. 3. The particulate nature of the assay system was illustrated by the observation that the apparent Km value of the lipase increased with the concentration of mitochondrial protein. For each protein concentration the lipase had two apparent Km values when the activity was assayed with intact mitochondria, but only one when assayed with submitochondrial particles. At the same protein concentration the Km value for the latter was identical with the "low affinity" Km for the lipase in intact mitochondria.  相似文献   

3.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

4.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

5.
Lipoprotein lipase activity was studied in rat heart cell cultures grown in the presence of 20% fetal calf and horse serum and a medium concentration of triacylglycerol of 0.03 mg/ml. After 6--8 days, when the enzyme activity had reached high levels, the cells were incubated for 24 h in a medium containing 20% serum derived from fasted or fed rats. No change in enzyme activity occurred in the presence of fasted rat serum, but a 50% fall was observed with fed rat serium. When the complete culture medium was supplemented with rat plasma VLDL (0.075--0.75 mg triacylglycerol) a pronounced decrease in lipoprotein lipase activity occurred after 3--5 h of incubation. Similar extent of enzyme fall was observed also in the presence of triacylglycerol-rich lipoproteins isolated from rat plasma after feeding of safflower oil or lard, even though the fatty acid composition of the triacylgylcerol varied markedly. As the addition of VLDL to the culture medium resulted in a lesser fall of heparin releasable than residual activity it seems that there was no direct inhibition of surface bound enzyme activity and that the transport of the enzyme to the cell surface was not affected. These data indicate that addition of VLDL to the culture medium resulted in a fall in enzyme synthesis, while total protein synthesis as determined by incorporation of [3H]leucine, remained unchanged. This inhibition could be reproduced by increasing free fatty acid concentration of the medium, however addition of excess albumin to VLDL-containing medium did not prevent the fall in enzyme activity. The present results obtained with cultured rat hearts cells suggest that in vivo plasma levels of triacylglycerol-rich lipoproteins could modulate the lipoproteins could modulate the lipoprotein lipase activity of the heart.  相似文献   

6.
The lipolytic activities of heart tissue towards full and partial acylglycerols were characterized. Tissue lysosomal, acid lipase activity (pH 4.8) was inhibited by high salt, protamine sulfate, NaF, MgATP, Triton X-100, serum and the esterase-inhibitor diethylparanitrophenyl phosphate. The tissue neutral triacylglycerol lipase activity (pH 7.4) was recovered predominantly in the microsomal and soluble fractions and exhibited essentially identical properties towards activators (serum, apolipoprotein C-II) and reagents (NaCl, Triton X-100, NaF, MgATP and diethylparanitrophenyl phosphate) relative to vascular lipoprotein lipase, except for protamine sulfate which increased the serum-stimulated neutral triacylglycerol lipase activity. Triacylglycerol hydrolysis at acid pH was incomplete, whereas at neutral pH full hydrolysis occurred. Myocardial mono- and diacylglycerol lipase activities, with pH optima of 8.0 and 7.4, respectively, were recovered in the microsomal fraction. They differed immunologically from neutral lipase and lipoprotein lipase and did not bind to heparin-Sepharose 4B. They were kinetically different, partially inhibited by NaCl and differentially affected by protamine sulfate. NaF, Triton X-100 and diethylparanitrophenyl phosphate. Our data suggest that endogenous hydrolytic activity against full and partial acylglycerols is mediated by separate enzymes.  相似文献   

7.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

8.
4 h after intravenous injection of recombinant HuTNF-alpha to fed rats, an increase in heart, diaphragm, and plasma lipoprotein lipase activity was observed. At the same time, a 40-60% decrease in enzymic activity in epididymal fat pad and kidney and 40% decrease in hepatic lipase activity in liver had occurred. Similar results were obtained 20 h after injection of recombinant HuTNF-alpha into fasted rats. Pretreatment with Indomethacin did not affect the changes in tissue lipoprotein lipase activity observed following recombinant HuTNF-alpha administration. Serum triacylglycerol concentration increased by 2- and 6-fold; 4 and 20 h after recombinant HuTNF-alpha administration. Disappearance of 14C-labeled triacylglycerol from the circulation after injection of small chylomicrons, biosynthetically labeled in their triacylglycerol and cholesterol moieties, was lower in TNF-treated than in control rats. However, the clearance rate of triacylglycerol was the same or even higher in recombinant HuTNF-alpha treated rats (assuming that 14C-labeled chylomicron triacylglycerol represents the serum triacylglycerol pool). The livers of recombinant HuTNF-alpha-treated rats and controls contained similar amounts of 14C-labeled lipids, but less [3H]cholesterol, suggesting that in recombinant HuTNF-alpha-treated rats, the liver took up chylomicron remnant particles enriched with triacylglycerol. Separation of the d less than 1.04 g/ml fraction of serum obtained from control and recombinant HuTNF-alpha treated rats by zonal ultracentrifugation revealed that in recombinant HuTNF-alpha-treated rats the lipoprotein particles were less lipolyzed than in controls. The secretion rate of [3H]triacylglycerol into the serum was determined 90 min after injection of [3H]palmitate albumin complex and Triton WR 1339. In recombinant HuTNF-alpha-treated rats, the secretion of [3H]triacylglycerol into plasma was 48% higher than in controls. It is suggested that the increase in lipoprotein lipase activity of heart and diaphragm resulted from an indirect effect of TNF. It is concluded that the increase in serum triacylglycerol in the recombinant HuTNF-alpha-treated rats is due mainly to an increased secretion of triacylglycerol by the liver. Impaired lipolysis, probably due to a fall in hepatic lipase could also contribute to the rise in plasma triacylglycerol.  相似文献   

9.
We have compared the effects of cellular cyclic AMP modulation on the regulation of lipoprotein lipase in cultures of rat epididymal pad preadipocytes and mesenchymal heart cells. Addition of dibutyryl cyclic AMP (dibutyryl cAMP) or 3-isobutyl-1-methylxanthine (IBMX) to preadipocytes grown in serum-containing culture medium resulted in a progressive decrease in lipoprotein lipase activity released into the culture medium so that at 6-8 h enzyme activity ranged between 20 and 30% of that recovered in the control dishes. Similar short-term (6-8 h) studies of the heart cell cultures showed a variable and much less pronounced depression of lipoprotein lipase activity. Thus, following dibutyryl cAMP and IBMX treatment, lipoprotein lipase activity ranged between 70 and 95% of control values. Incubation for 6 h with cholera toxin was followed by a 4-fold rise in the concentration of cellular cyclic AMP in both types of culture, but while in heart cell cultures enzyme activity was unchanged, lipoprotein lipase activity in preadipocytes decreased to 30% of control value. After 24 h incubation with all three effectors, an increase in lipoprotein lipase activity was seen. In the preadipocytes the increase ranged between 50 and 150% above control value, in the heart cell cultures it was 100-250%. 24-h incubation of heart cell cultures with dibutyryl cAMP resulted in a 6-fold increase of heparin-releasable lipoprotein lipase activity while residual activity was doubled. The rise in surface-bound lipoprotein lipase was evidenced also by an increase in the lipolysis of chylomicron triacylglycerol. In the presence of cycloheximide, the dibutyryl cAMP-induced heparin-releasable and residual lipoprotein lipase activity declined at the same rate as the basal activity. The reason for the difference in response of cultured preadipocytes and heart cells to the effectors during the first 8 h of incubation has not been elucidated, but could be related to a possible absence of hormone-sensitive lipase in the heart cells, and hence in a difference in intracellular metabolism of triacylglycerol. On the other hand, a common mechanism can be postulated for the long-term effect of cyclic AMP on the induction of lipoprotein lipase activity in both types of cultures. It probably involves mRNA and protein synthesis, which culminates in an increase in enzyme activity.  相似文献   

10.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

11.
1. Adrenaline has a biphasic effect on intracellular lipoprotein lipase activity and on endogenous triacylglycerol content in heparin-perfused heart. 2. A high concentration of adrenaline (1 microM in the perfusion buffer) activated endogenous lipoprotein lipase activity and, at the same time, decreased intracellular triacylglycerol stores. 3. In contrast, a low concentration (0.005 microM-adrenaline) inhibited intracellular lipoprotein lipase activity. Under these conditions, cardiac triacylglycerol content was elevated above control values. 4. Perfusing the heart with high and low concentrations of 3-isobutyl-1-methylxanthine elicited a biphasic effect on endogenous lipoprotein lipase activity and triacylglycerol content similar to that seen with adrenaline treatment. 5. The effect of adrenaline on intracellular lipoprotein lipase activity appears to be mediated by cyclic AMP through protein kinase. 6. A possible role for intracellular lipoprotein lipase in the regulation of endogenous triacylglycerol in rat heart is proposed.  相似文献   

12.
Adult male Wistar rats were continuously irradiated for 30 days on an experimental field from a 60Co source or radiation. Lipoprotein lipase activity was determined in their adipose tissue, heart and liver at intervals of 1, 3, 7, 14, 21 and 30 days from the beginning of irradiation and triacylglycerol, total cholesterol, phospholipid and non-esterified fatty acid concentrations were determined in their serum. Throughout the whole of the study, lipoprotein lipase activity was lower in the adipose tissue and higher in the heart of irradiated rats than in the controls. In the liver it was low 3 days from the onset of irradiation; at the other intervals it was variable and differed only non-significantly from the controls. Serum lipid concentrations were raised in irradiated rats--triacylglycerol from the 7th day, phospholipids from the 14th day and non-esterified fatty acids throughout the whole period of irradiation. In keeping with the high triacylglycerol values in the serum of irradiated rats, lipoprotein lipase activity in their adipose tissue was low.  相似文献   

13.
Studies of lipoprotein lipase during the adipose conversion of 3T3 cells.   总被引:19,自引:0,他引:19  
L S Wise  H Green 《Cell》1978,13(2):233-242
Lipoprotein lipase activity is negligible in exponentially growing 3T3-L1 cells and 3T3-F442A cells, but develops in both lines when they reach a confluent state and undergo adipose conversion. 3T3-C2 cells, which undergo adipose conversion with extremely low frequency, do not develop the enzyme. The lipase activity of 3T3-L1 and 3T3-F442A is greatly enhanced by insulin and increases 80–180 fold during the adipose conversion. The lipase has the following characteristics in common with lipoprotein lipase from adipose and other tissues: it is dependent upon serum, is inhibited by 0.5–1.0 M sodium chloride, is recovered from acetone powders, has an alkaline pH optimum and is released from the cells by heparin. Like the lipoprotein lipase of tissue adipose cells, the enzyme of 3T3-L1 decays in the presence of cycloheximide with a half-time of about 25 min at 37°C.The ability of 3T3-F442A and 3T3-L1 to take up triglyceride from the medium depends almost completely upon lipoprotein lipase. They incorporate the fatty acids of a large fraction of a triglyceride emulsion added to the medium, and this utilization is stimulated by heparin. Very little of the glycerol portion of the triglyceride is incorporated. 3T3-C2, which lacks lipoprotein lipase, utilizes very little of either the fatty acid or the glycerol portion of triglyceride.The relevance of external lipid or lipoprotein to both the adipose conversion and the appearance of lipoprotein lipase was tested using confluent cultures in medium depleted of these components. In the presence of serum whose lipoproteins have been removed by flotation, lines 3T3-F442A and 3T3-L1 undergo adipose conversion as completely as in the presence of untreated serum, and lipoprotein lipase activity appears at essentially the same rate. In medium whose serum supplement has been extracted with acetone:ethanol, 3T3-F442A cells undergo adipose conversion to nearly the same extent as in untreated serum, and develop nearly the same increase in lipoprotein lipase activity.Unless even very low concentrations of lipids or lipoprotein are saturating it can be concluded that the adipose conversion does not depend upon external lipids or lipoproteins for its induction; rather the differentiation program is built into the cell type and comes into operation when growth is arrested even in their absence. The source of fatty acids utilized for triglyceride synthesis, however, may be affected by the amount of lipid provided to the cells.  相似文献   

14.
Whole-irradiated rabbit pre-heparin plasma had an important inhibitory effect on hepatic triacylglycerol lipase and lipoprotein lipase activities, whereas control rabbit pre-heparin plasma slightly inhibited hepatic triacylglycerol lipase activity at a high concentration and enhanced lipoprotein lipase activity. As some apolipoproteins were known to modulate these two lipolytic enzymes, the inhibitory effects of irradiated rabbit plasma were investigated in apolipoproteins. Three apolipoproteins, with isoelectric points of about 6.58, 6.44 and 6.12, characterized by their low content in threonine (threonine-poor apolipoproteins) were produced in high concentrations in rabbit VLDL and HDL after irradiation. The effects of these apolipoproteins on control rabbit post-heparin plasma hepatic triacylglycerol lipase and extrahepatic lipoprotein lipase were studied. Threonine-poor apolipoproteins substantially inhibited the hepatic triacylglycerol lipase activity and enhanced the apolipoprotein C-II-stimulated activity of lipoprotein lipase. The amounts of these apolipoproteins in triacylglycerol-rich lipoprotein particles may determine the lipolytic activity of lipoprotein lipase and hepatic triacylglycerol lipase in triacylglycerol hydrolysis. The existence of another inhibitor of lipoprotein lipase remains to be determined.  相似文献   

15.
The concerted action of purified bovine gastric lipase and human pancreatic colipase-dependent lipase and colipase, or crude human pancreatic juice, in the digestion of human milk triacylglycerols was explored in vitro. Gastric lipase hydrolyzed milk triacylglycerol with an initially high rate but became severely inhibited already at low concentration of released fatty acid. In contrast, colipase-dependent lipase could not, by itself, hydrolyze milk triacylglycerol. However, a short preincubation of milk with gastric lipase, resulting in a limited lipolysis, made the milk fat triacylglycerol available for an immediate and rapid hydrolysis by pancreatic juice, and also for purified colipase-dependent lipase, provided colipase and bile salts were present. The same effect was obtained when incubation with gastric lipase was replaced by addition of long-chain fatty acid. Long-chain fatty acid increased the binding of colipase-dependent lipase to the milk fat globule. Binding was efficient only in the presence of both fatty acid and colipase. We conclude that a limited gastric lipolysis of human milk triacylglycerol, resulting in a release of a low concentration of long-chain fatty acids, is of major importance for the subsequent hydrolysis by colipase-dependent lipase in the duodenum.  相似文献   

16.
The objective of this investigation was to test the hypothesis that the diabetes-induced reduction in lipoprotein lipase activity in cardiac myocytes may be due to hypertriglyceridemia. Administration of 4-aminopyrazolopyrimidine (50 mg/kg) to control rats for 24 h reduced plasma triacylglycerol levels and increased the heparin-induced release of lipoprotein lipase into the incubation medium of cardiac myocytes. The acute (3-5 days) induction of diabetes by streptozotocin (100 mg/kg) produced hypertriglyceridemia and reduced heparin-releasable lipoprotein lipase activity in cardiac myocytes. Treatment of diabetic rats with 4-aminopyrazolopyrimidine resulted in a fall in plasma triacylglycerol content and increased heparin-releasable lipoprotein lipase activity. Administration of Triton WR-1339 also resulted in hypertriglyceridemia, but the heparin-induced release of lipoprotein lipase from control cardiac myocytes was not reduced in the absence of lipolysis of triacylglycerol-rich lipoproteins. Treatment with Triton WR-1339 did, however, increase the heparin-induced release of lipoprotein lipase from diabetic cardiac myocytes. Preparation of cardiac myocytes with 0.9 mM oleic acid resulted in a decrease in both total cellular and heparin-releasable lipoprotein lipase activities. These results suggest that the diabetes-induced reduction in heart lipoprotein lipase activity may, at least in part, be due to an inhibitory effect of free fatty acids, derived either from lipoprotein degradation or from adipose tissue lipolysis, on lipoprotein lipase activity in (and (or) release from) cardiac myocytes.  相似文献   

17.
The lipolysis of rat chylomicron polyenoic fatty acid esters with bovine milk lipoprotein lipase and human hepatic lipase was examined in vitro. Chylomicrons obtained after feeding fish oil or soy bean oil emulsions were used as substrates. The lipolysis was followed by gas chromatography or by using chylomicrons containing radioactive fatty acids. Lipoprotein lipase hydrolyzed eicosapentaenoic (20:5) and arachidonic acid (20:4) esters at a slower rate than the C14-C18 acid esters. More 20:5 and 20:4 thus accumulated in remaining tri- and diacylglycerols. Eicosatrienoic, docosatrienoic and docosahexanoic acids exhibited an intermediate lipolysis pattern. When added together with lipoprotein lipase, hepatic lipase increased the rate of lipolysis of 20:5 and 20:4 esters of both tri- and diacylglycerols. Addition of NaCl (final concentration 1 M) during the course of lipolysis inhibited lipoprotein lipase as well as the enhancing effect of hepatic lipase on triacylglycerol lipolysis. Hepatic lipase however, hydrolyzed diacylglycerol that had already been formed. Chylomicron 20:4 and 20:5 esters thus exhibit a relative resistance to lipoprotein lipase. It is suggested that the tri- and diacylglycerol species containing these fatty acids may accumulate at the surface of the remnant particles and act as substrate for hepatic lipase during a concerted action of this enzyme and lipoprotein lipase.  相似文献   

18.
A selective deficiency of hepatic triacylglycerol lipase in guinea pigs   总被引:1,自引:0,他引:1  
The properties of postheparin plasma triacylglycerol-hydrolyzing enzymes were investigated in guinea pig and rat. In rat, lipoprotein lipase and hepatic triacylglycerol lipase were separated on a heparin-Sepharose affinity chromatography. In postheparin plasma of guinea pig, however, hepatic triacylglycerol lipase was almost completely absent, while lipoprotein lipase was present. Hepatic triacylglycerol lipase was also deficient in the liver tissue extract of guinea pig. Plasma lipoprotein compositions of high-fat fed and control guinea pigs were analyzed. One of the outstanding changes found in high-fat fed animals was the presence of chylomicronemia. One guinea pig showed gross hyperlipemia with triacylglycerol concentrations of 2715 mg/100 ml. Plasma triacylglycerol concentrations of each lipoprotein fraction of very low density, intermediate density, low density and high density lipoproteins from high-fat fed animals were almost the same as those of the corresponding lipoprotein fractions from controls. Discussion was focused on the development of chylomicronemia in relation to the defects of triacylglycerol-hydrolyzing enzyme systems in this animal.  相似文献   

19.
We describe a sensitive and reproducible lipase assay based on the binding of 63Ni to fatty acid. This method can detect down to 1 nmol of fatty acid per milliliter of solution. It has been adapted for measuring low concentrations of lipoprotein lipase and hepatic triacylglycerol lipase. Furthermore, in the presence of tritiated triolein, the method is insensitive to radiolabel interference, even when the fatty acid is labeled.  相似文献   

20.
Two triacylglycerol lipase activities were characterized after partial purification from pig post-heparin plasma. These two lipase activities were eluted sequentially with a NaCl gradient from columns containing Sepharose with covalently linked heparin. The first lipase activity, which was eluted at 0.75M-NaCl, was not inhibited at 28 degrees C in the presence of 1M-NaCl and was not further activated by plasma apolipoproteins. The absence of this lipase activity from post-heparin plasma from hepatectomized pigs indicates that the liver plays a role in the synthesis of this enzyme. A second lipase activity, which was eluted at 1.2M-NaCl, was inhibited when assayed in the presence of 1.0M-NaCl and was activated 14-fold by an apolipoprotein isolated from human very-low-density lipoprotein. The characteristics are identical with those of lipoprotein lipase purified from pig adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号