共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to gain insight into the catalytic mechanism of Fe-type nitrile hydratases (NHase), the pH and temperature dependence of the kinetic parameters k cat, K m, and k cat/ K m along with the solvent isotope effect were examined for the Fe-type NHase from Comamonas testosteroni Ni1 ( CtNHase). CtNHase was found to exhibit a bell-shaped curve for plots of relative activity vs pH over pH values 4-10 for the hydration of acrylonitrile and was found to display maximal activity at pH approximately 7.2. Fits of these data provided a p K ES1 value of 6.1 +/- 0.1, a p K ES2 value of 9.1 +/- 0.2 ( k' cat = 10.1 +/- 0.3 s (-1)), a p K E1 value of 6.2 +/- 0.1, and a p K E2 value of 9.2 +/- 0.1 ( k' cat/ K' m of 2.0 +/- 0.2 s (-1) mM (-1)). Proton inventory studies indicate that two protons are transferred in the rate-limiting step of the reaction at pH 7.2. Since CtNHase is stable to 25 degrees C, an Arrhenius plot was constructed by plotting ln( k cat) vs 1/ T, providing an E a of 33.3 +/- 1.5 kJ/mol. Delta H degrees of ionization values were also determined, thus helping to identify the ionizing groups exhibiting the p K ES1 and p K ES2 values. Based on Delta H degrees ion data, p K ES1 is assigned to betaTyr68 while p K ES2 is assigned to betaArg52, betaArg157, or alphaSer116 (NHases are alpha 2beta 2 heterotetramers). Given the strong similarities in the kinetic data obtained for both Co- and Fe-type NHase enzymes, both types of NHase enzymes likely hydrate nitriles in a similar fashion. 相似文献
2.
3.
Kuhn ML Martinez S Gumataotao N Bornscheuer U Liu D Holz RC 《Biochemical and biophysical research communications》2012,424(3):365-370
We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the α- and β-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328–2 (ReNHase) was expressed with (ReNHase+Act) and without (ReNHase?Act) its activator protein, establishing that expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal structure of CtNHase was determined to 2.4 Å resolution revealing an αβ heterodimer, similar to other Fe-type NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein. 相似文献
4.
3alpha-Hydroxysteroid dehydrogenase (3alpha-HSD) catalyzes the oxidoreduction at carbon 3 of steroid hormones and is postulated to initiate the complete mineralization of the steroid nucleus to CO(2) and H(2)O in Comamonas testosteroni. By this activity, 3alpha-HSD provides the basis for C. testosteroni to grow on steroids as sole carbon and energy source. 3alpha-HSD was cloned and overexpressed in E. coli and purified to homogeneity by an affinity chromatography system as His-tagged protein. The recombinant enzyme was found to be functional as oxidoreductase toward a variety of steroid substrates, including androstanedione, 5alpha-dihydrotestosterone, androsterone, cholic acid, and the steroid antibiotic fusidic acid. The enzyme also catalyzes the carbonyl reduction of nonsteroidal aldehydes and ketones such as metyrapone, p-nitrobenzaldehyde and a novel insecticide (NKI 42255), and, based on this pluripotent substrate specificity, was named 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR). It is suggested that 3alpha-HSD/CR contributes to important defense strategies of C. testosteroni against natural and synthetic toxicants. Antibodies were generated in rabbits against the entire 3alpha-HSD/CR protein, and may now be used for evaluating the pattern of steroid induction in C. testosteroni on the protein level. Upon gel permeation chromatography the purified enzyme elutes as a 49.4 kDa protein revealing for the first time the dimeric nature of 3alpha-HSD/CR of C. testosteroni. 相似文献
5.
Nitrile hydratase (NHase) has attracted substantial attention for industrial applications to produce large-scale amides. Several NHases have been investigated for functional expression in Escherichia coli (E. coli). A Fe-type NHase was obtained from an acetamiprid-degrading bacterium, Pseudoxanthomonas sp. AAP-7 and functionally expressed in E. coli BL21 (DE3). No significant NHase activity was detected from the E. coli expressing either the NHase gene alone or NHase and P46K genes transcribed as one unit. Purified recombinant NHase, co-expressed with P46K on two separate plasmids, exhibited the maximal enzyme activity. Furthermore, a GST tag attached to the N-terminus of α subunit resulted in a slight increase in the solubility and stability of NHase compared with a His tag at the C-terminus of β subunit. When co-expressed with the chaperones GroEL-GroES, the yield of the soluble recombinant NHase was improved substantially, while a small decrease in NHase activity was observed. The putative activator P46K was strictly required for production of the recombinant NHase for full enzyme activity, although the chaperones GroEL-GroES appeared to assist NHase to fold properly. This study of the expression of a fully active Fe-type NHase would provide another example to enhance our understanding of NHase biosynthesis. 相似文献
6.
Petrillo KL Wu S Hann EC Cooling FB Ben-Bassat A Gavagan JE DiCosimo R Payne MS 《Applied microbiology and biotechnology》2005,67(5):664-670
The genes encoding a thermally stable and regio-selective nitrile hydratase (NHase) and an amidase from Comamonas testosteroni 5-MGAM-4D have been cloned and sequenced, and active NHase has been over-produced in Escherichia coli. Maximal activity requires co-expression of a small open reading frame immediately downstream from the NHase beta subunit gene. Compared to the native organism, the E. coli biocatalyst has nearly threefold more NHase activity on a dry cell weight basis, and this activity is significantly more thermally stable. In addition, this biocatalyst converts a wide spectrum of nitrile substrates to the corresponding amides. Such versatility and robustness are desirable attributes of a biocatalyst intended for use in commercial applications. 相似文献
7.
8.
Reisinger Ch Osprian I Glieder A Schoemaker HE Griengl H Schwab H 《Biotechnology letters》2004,26(21):1675-1680
Nitrile hydratase and amidase from Rhodococcus erythropolis CIMB11540 were both cloned and expressed in Escherichia coli. Crude cell free extracts were used for the hydrolysis of different aromatic cyanohydrins. Nitrile hydratase expression was increased up to 5-fold by redesign of the expression cassette. The recombinant enzymes were successfully used for the conversion of several cyanohydrins to the corresponding alpha-hydroxy amides and acids while retaining enantiopurity. 相似文献
9.
10.
Travensolo RF Garcia W Muniz JR Caruso CS Lemos EG Carrilho E Araújo AP 《Protein expression and purification》2008,59(1):153-160
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. 相似文献
11.
为从基因水平上改造腈水合酶,进行了诺卡氏菌腈水合酶基因的外源表达研究。在重组大肠杆菌表达系统内,腈水合酶的α亚基几乎不能正常表达,在重组E. coli BL21(DE3) (pET32aNHBAX)中,腈水合酶活性仅为0.04U/mg。构建重组毕赤酵母表达质粒pPIC3.5kNHBAX,采用电穿孔转化法将其转入宿主菌P. pastoris GS115中,经过菌株培养和腈水合酶的诱导表达,筛选获得了优选菌株P. pastoris NH4。对P. pastoris NH4的细胞培养和腈水合酶的诱导表达条件进行优化,结果表明,重组腈水合酶在毕赤酵母中的表达水平可以达到0.52U/mg,但不能稳定积累。 相似文献
12.
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding. 相似文献
13.
Michael Weiss Anna I. Kesberg Kurt M. LaButti Sam Pitluck David Bruce Loren Hauser Alex Copeland Tanja Woyke Stephen Lowry Susan Lucas Miriam Land Lynne Goodwin Staffan Kjelleberg Alasdair M. Cook Matthias Buhmann Torsten Thomas David Schleheck 《Standards in genomic sciences》2013,8(2):239-254
Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes. 相似文献
14.
The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s?1 at 30 °C. Since adenine is deaminated ~103 slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. 相似文献
15.
16.
Organophosphate degrading enzymes are of great interest in light of their ability to detoxify chemical warfare agents. The diisopropylfluorophosphatase (DFPase) from Loligo vulgaris is characterized by its high stability and broad substrate specifity. Here we report the production of large amounts of active, recombinant DFPase using an Escherichia coli expression system. The enzyme was purified to homogeneity using a combination of immobilized metal affinity and ion exchange chromatography. CD-spectroscopy indicates a well folded protein with a high amount of beta-sheet structure. Limited proteolysis was used to gain a deeper insight into the structural organization of the protein. DFPase possesses an internal protease-sensitive region located between amino acids 146 and 149. The two proteolytic fragments remain as a tight complex retaining a DFPase activity comparable to the intact enzyme. Overexpression clones for each fragment were constructed with the expression resulting in the formation of inclusion bodies. Upon isolation and refolding active protein is only formed when both fragments are present. Thus, the two proteolytic fragments are probably part of a stable single-domain protein with multiple contacts between them and only one protease accessible surface loop. 相似文献
17.
Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4
Prepechalová I Martínková L Stolz A Ovesná M Bezouska K Kopecký J Kren V 《Applied microbiology and biotechnology》2001,55(2):150-156
The nitrile hydratase from Rhodococcus equi A4 consisted of two kinds of subunits which slightly differed in molecular weight (both approximately 25 kDa) and showed a significant similarity in the N-terminal amino acid sequences to those of the nitrile hydratase from Rhodococcus sp. N-774. The enzyme preferentially hydrated the S-isomers of racemic 2-(2-, 4-methoxyphenyl)propionitrile, 2-(4-chlorophenyl)propionitrile and 2-(6-methoxynaphthyl)propionitrile (naproxennitrile) with E-values of 5-15. The enzyme functioned in the presence of 5-98% (v/v) of different hydrocarbons, alcohols or diisopropyl ether. The addition of 5% (v/v) of n-hexane, n-heptane, isooctane, n-hexadecane, pristane and methanol increased the E-value for the enzymatic hydration of 2-(6-methoxynaphthyl)propionitrile. 相似文献
18.
Ch. Reisinger I. Osprian A. Glieder H. E. Schoemaker H. Griengl H. Schwab 《Biotechnology letters》2005,26(21):1675-1680
Nitrile hydratase and amidase from Rhodococcus erythropolis CIMB11540 were both cloned and expressed in Escherichia coli.Crude cell free extracts were used for the hydrolysis of different aromatic cyanohydrins. Nitrile hydratase expression was increased up to 5-fold by redesign of the expression cassette. The recombinant enzymes were successfully used for the conversion of several cyanohydrins to the corresponding α-hydroxy amides and acids while retaining enantiopurity. 相似文献
19.
Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. 总被引:1,自引:0,他引:1 下载免费PDF全文
In this report, we describe some of the characteristics of the Comamonas testosteroni B-356 biphenyl (BPH)-chlorobiphenyl dioxygenase system, which includes the terminal oxygenase, an iron-sulfur protein (ISPBPH) made up of an alpha subunit (51 kDa) and a beta subunit (22 kDa) encoded by bphA and bphE, respectively; a ferredoxin (FERBPH; 12 kDa) encoded by bphF; and a ferredoxin reductase (REDBPH; 43 kDa) encoded by bphG. ISPBPH subunits were purified from B-356 cells grown on BPH. Since highly purified FERBPH and REDBPH were difficult to obtain from strain B-356, these two components were purified from recombinant Escherichia coli strains by using the His tag purification system. These His-tagged fusion proteins were shown to support BPH 2,3-dioxygenase activity in vitro when added to preparations of ISPBPH in the presence of NADH. FERBPH and REDBPH are thought to pass electrons from NADH to ISPBPH, which then activates molecular oxygen for insertion into the aromatic substrate. The reductase was found to contain approximately 1 mol of flavin adenine dinucleotide per mol of protein and was specific for NADH as an electron donor. The ferredoxin was found to contain a Rieske-type [2Fe-2S] center (epsilon 460, 7,455 M-1 cm-1) which was readily lost from the protein during purification and storage. In the presence of REDBPH and FERBPH, ISPBPH was able to convert BPH into both 2,3-dihydro-2,3-dihydroxybiphenyl and 3,4-dihydro-3,4-dihydroxybiphenyl. The significance of this observation is discussed. 相似文献
20.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum. 相似文献